
Karlsruhe

October 03 2012
Revised June 21 2022

The field Q(2 cos
(
π
n

)
), its Galois group, and length ratios in the

regular n-gon

Wolfdieter L a n g 1

Abstract

The normal field extension Q(ρ(n)), with the algebraic number ρ(n) := 2 cos
(π
n

)
, for n ∈ N,

is related to ratios of the lengths between diagonals and the side of a regular n−gon. This has been
considered in a paper by P. Steinbach. These ratios, numbered k = 1, ..., n−1, are given by Chebyshev

polynomials S(k − 1, x = ρ(n)). The product formula for these ratios was found by Steinbach and is
re-derived here from a known formula for the product of Chebyshev S−polynomials. It is shown that
it follows also from the S−polynomial recurrence and certain rules following from the trigonometric
nature of the argument x = ρ(n). The minimal integer polynomial C(n, x) for ρ(n) is presented, and
its simple zeros are expressed in the power-basis of Q(ρ(n)). Also the positive zeros of the Chebyshev

polynomial S(k − 1, ρ(n)) are rewritten in this basis. The number of positive and negative zeros of
C(n, x) is determined. The coefficient C(n, 0) is computed for special classes of n values. Theorems
on C(n, x) in terms of monic integer Chebyshev polynomials of the first kind (called here t̂) are given.
These polynomials can be factorized in terms of the minimal C-polynomials. A conjecture on the
discriminant of these polynomials is made. The Galois group is either Zδ(n), the cyclic group of the
order given by the degree δ(n) of C(n, x), or it is a direct product of certain cyclic groups. In order
to determine the cycle structure a novel modular multiplication, called Modd n is introduced. On the
reduced odd residue system Modd n this furnishes a group which is isomorphic to this Galois group.

1 Introduction and Summary

Length ratios between diagonals and the side of a regular n−gon (called diagonal/side ratios, abbreviated
DSRs) have been considered by Steinbach [29]. He gave a product formula for these ratios (called by
him diagonal product formula (DPF)), and for the pentagon and heptagon details were given. In the
pentagon case the quadratic number field Q(

√
5) with the basis < 1, ϕ > for integers of this field turns

up. Here ϕ, the golden section, is identified with ρ(5) which is the length ratio between any of the two
diagonals and the pentagon side. For the heptagon there are two different diagonal length and the two
ratios between them and the side length have been called ρ := ρ(7) and σ. The DPF allowed to reduce
all products and quotients of ρ and σ to Q-vectors with the basis < 1, ρ, σ > . For example, ρ2 = 1 + σ,
and one can use instead the power basis < 1, ρ, ρ2 > of the algebraic number field Q(ρ(7)) (the use of the
same acute bracket notation for different bases should not lead to a confusion). The minimal polynomial
of ρ(7), in the present work called C(7,x), is x3 − x2 − 2x + 1, and this was also given in [29]. Therefore,
[Q(ρ(7)) : Q] = 3, which is the degree of this field extension. For odd n, n = 2 k + 1, Steinbach gave
a polynomial with one of its roots ρ(2 k + 1). In the present work the minimal polynomial for ρ(n),

called C(n,x), for every n ∈ N, is given in terms of the known one for cos

(
2π

N

)
, called Ψ(N,x), with

N = 2n. The connection between Ψ(N,x) and divisor product representations of N , and to Chebyshev

T−polynomials has been worked out earlier by the author. See the links under OEIS [27] A181875 and
A007955 (in the sequel OEIS Anumbers will appear without repeating this reference). C(n, x) turns out
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to be an integer polynomials of degree δ(n) =A055034(n) . All its zeros are known, and they are simple.
Q(ρ(n)) is the splitting field for the minimal polynomial C(n, x) of ρ(n). It is a normal extension of
the rational field. These C-polynomial zeros are written in the power basis of Q(ρ(n)) with the help
of certain scaled Chebyshev T−polynomials (called here t̂ with their integer coefficient array A128672).
This array can also be used to rewrite the positive zeros of the Chebyshev S(n−1, x) polynomial, related
to the DSRs, in this power basis. The use of S−polynomial technology allows also for a re-derivation of
the product formulae (DPF) for the length ratios between the regular n−gon diagonals and side.

In section 2 S(k − 1, ρ(n)) is shown to yield the DSRs of the regular n-gon. The DPF is also re-derived
there, and the independent products are extracted. This is called reduced algebra over Q. In section 3
the minimal polynomial C(n, x) is presented, and its zeros are related to the power basis of the algebraic
number field Q(ρ(n)). In section 4 the Q-automorphisms of this field, the Galois group G(Q(ρ(n))/Q),
is treated. It is the cyclic group Zδ(n), except for infinitely many n-values where it is the direct product
of cyclic groups, hence non-cyclic. For n from 1..100 there are 30 non-cyclic groups. A novel modular
multiplication on the odd numbers, called Modd n, is introduced which serves to determine the cycle
graph structure of this Galois group. The multiplicative group Modd n is isomorphic to this Galois group.

2 Regular polygon diagonals/side ratios (DSRs)

Motivated by a paper of Steinbach [29] we consider the diagonals and the side in the regular n−gon

(inscribed in the unit circle). The vertices on the unit circle are called V
(n)
k , k = 0, ...., n−1, n = 2, 3, ...;

V
(n)
0 has coordinates (1, 0); the side length (with the radius’ length 1 unit) is s(n) = 2 sin

(π
n

)
. The

length of V
(n)
0 V

(n)
k is d

(n)
k = 2 sin

(
π k

n

)
, for k = 1, ..., n − 1, hence d1 = s(n). We only need one side

and the diagonals in the upper half plane, i.e. it suffices to consider k ∈ {1, ..., ⌊n/2⌋}. For even n, the

largest diagonal (k =
n

2
), of length 2, lies on the negative real axis. See Fig. 1, and Fig. 2, for the case

n = 10 (decagon), and for n = 11 (hendecagon), respectively. The length ratios of interest, the DSRs,

are R
(n)
k =

d
(n)
k

d
(n)
1

for the given k−values. Here Chebyshev S−polynomials in their trigonometric form

enter the stage (see A049310 for their coefficients):

R
(n)
k = S(k − 1, ρ(n)), (1)

where we use the second ratio (for the smallest diagonal) ρ(n) := R
(n)
2 = 2 cos

(π
n

)
. Remember that

S(n, x) := U(n, x/2) with Chebyshev U−polynomial (second kind). It is well known that the zeros of

the polynomials S(n − 1, x) are x
(n−1)
k,± = ±2 cos

(
k π

n

)
, for k = 1, ...,

⌈
n−1
2

⌉
. Note that in the even n

case the zero x = 0 appears twice from ±0. The S−polynomials are orthogonal polynomials defined on
the real interval [−2,+2]. Hence their zeros are guaranteed to be simple. They belong to the Jacobi class.
Due to (anti)symmetry it is sufficient to consider only the positive zeros (we disregard x = 0 in the even
n case). Now also Chebyshev T−polynomials (first kind; see the coefficient table A053120) enter, which
are written in terms of S−polynomials. (The T−polynomials appear as trace polynomials in a 2 × 2
transfer matrix when one solves the three term recurrences of these classical orthogonal polynomials.)

x
(n−1)
k ≡ x

(n−1)
k,+ = 2T (k, ρ(n)/2) =: t̂k(ρ(n)) ≡ t̂(k, ρ(n)) (2)

= S(k, ρ(n)) − S(k − 2, ρ(n)) , k = 1, ...,

⌊
n− 1

2

⌋
. (3)

Note that these positive zeros decrease with k, and that t̂k is an integer polynomial of degree k because the
S−polynomials are integer. The coefficient array for these monic t̂-polynomials is A127672. In [1] these
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polynomials are called Chebyshev C-polynomials, but we use the letter C for the minimal polynomials
of ρ(n). The zeros can be replaced by DSRs from the above given eq. (1).

Positive zeros of S(n− 1,x) from DSRs: x
(n−1)
k = R

(n)
k+1 − R

(n)
k−1 . (4)

Figure 1: Decagon n = 10 Figure 2: Hendecagon (n=11)

As an aside we give the factorization of S(n− 1, x) in terms of the polynomial

P (k, x) :=

k∏

l=1

(
x − 2 cos

(
l π

2 k + 1

))
with positive zeros.

S(n− 1, x) = xΘ(n−1) P

(⌊
n− 1

2

⌋
, x

)
(−1)⌊n−1

2 ⌋ P
(⌊

n− 1

2

⌋
,−x

)
, (5)

where θ(n − 1) := 0 if n is odd, and 1 if n is even. This factorization is also considered in [4] for the
U(n, x) polynomials for even and odd n separately. For example, for the heptagon n = 7 one finds the
factorization of S(6, x) with the following real polynomial P (3, x).

P (3, x) = x3 − (2σ(7) − 1)x2 + 2 ρ(7)x − 1 , (6)

with ρ(7) = R
(7)
2 and σ(7) := R

(7)
3 (see also the introduction). The three positive zeros are, written in

terms of the DSRs, ρ(7), σ(7) − 1 and σ(7) − ρ(7). Here we used the general translation formulae eq.
(4) to rewrite the positive zeros of S(n − 1, x) in terms of DSRs. One should also write this in terms of
powers of ρ(7) with the help of eq. (1) (see eq. (7) below).

Each P

(⌊
n− 1

2

⌋
, x

)
can be considered as characteristic polynomial for a (

⌊
n−1
2

⌋
+ 1)-term recurrence

sequence {fk}∞k=0 in the integral domain of Q(ρ(n)) (represented by a δ(n)-tuple of ordinary (rational)
integers (A1,k, A2,k, ..., Aδ(n),k). Here δ(n) is the degree of the minimal polynomial of ρ(n) which will be

discussed in sect. 3. In fact, one has
⌊
n−1
2

⌋
such δ(n)-tuple sequences corresponding to the independent

inputs. As a simple example take the n = 5 pair (δ(5) = 2) of sequences corresponding to P (2, x) =
x2 − (2ϕ− 1)x+ 1, with the golden section ϕ := ρ(5) and the simplest input. This is S(k,

√
5) = A1,k 1+

A2,k ϕ with input S(−1,
√
5) = 0, S(0,

√
5) = 1. See A005013(k + 1) (−1)k , and 2A147600(k − 1), for

A1,k and A2,k, respectively.

For later purposes it is also useful to give a dictionary between the positive zeros of S(n−1, x), i.e. those
of P (

⌊
n−1
2

⌋
, x), and powers of ρ(n). One direction follows from the above given formula, eq. (2), for
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x
(n−1)
k in terms of the monic integer polynomials t̂(k, ρ) = 2T (k, ρ/2). The dependence on n has here

been omitted.

Positive zeros of S(n− 1,x) from ρ(n)-powers: x
(n−1)
k =

⌊k
2⌋∑

l=0

(−1)l
k

k − l

(
k − l

l

)
ρ(n)k−2l .

(7)
The coefficients are given in the triangle A127672. E.g., x5 = 5 ρ − 5 ρ3 + ρ5 (omitting n). For
the heptagon this shows that the three positive zeros of S(6, x) are ρ(7), σ(7) − 1 = ρ2(7) − 2 and
σ(7) − ρ(7) = ρ(7)2 − ρ(7) − 1 . In this case these three zeros could be used as a Q-vector space
basis. Note that the n dependence is via the t̂-polynomial variable ρ(n) (which satisfies C(n, ρ(n)) = 0 by
definition of the minimal polynomial C). For example, it is true for all n that the second largest positive

zero of S(n− 1, x), namely x
(n−1)
2 , is always ρ(n)2 − 2. Hence, from above, R

(n)
3 − 1 = ρ(n)2 − 2; or

if one calls R
(n)
3 =: σ(n) then ρ(n)2 = σ(n) + 1. This has been noted for n = 7 above but is holds

in general, showing that σ(n) is algebraically dependent on ρ(n). This fact has been observed already in
[29] where it appeared as a special product formula (see the later DPF eq. (13), m = k = 2, or eq. (11)
with k = 2).

The inverse formulae (DSRs in terms of ρ-powers) have already been given above in eq. (1). Here one

uses the S-triangle A049310 for the translation. E.g., R
(n)
4 = −2 ρ(n) + ρ3(n) = ρ(n) (ρ(n)2 − 2)

= ρ(n) (σ(n) − 1) . Of course, R
(n)
4 is interesting only for n ≥ 9 because only then the corresponding

diagonal lies in the upper half-plane (including the negative real axis).

Note that the number of positive zeros of S(n − 1, x), i.e.,
⌊
n−1
2

⌋
, is less or equal to

⌊
n
2

⌋
, the number

of DSRs for diagonals in the upper half plane including the negative real axis. The zero x = 1 never
appears. As can be seen in the n = 7 case these zeros can nevertheless be used as Q-vector space basis (in
sect. 3 it will become clear that the degree δ(7) is also 3). In the case n = 9 the two numbers are both 4,
but the degree δ(9) is 3, hence only three of the zeros and three of the DSRs are rationally independent.

To wit: x(8) = −5x
(8)
3 + 3x

(8)
1 − 4x

(8)
2 and R

(9)
4 = R

(9)
1 + R

(9)
2 = 1 + ρ(9).

Because of symmetry only DSRs for diagonals of the upper half plane (including the negative real axis),

i.e., k ∈ {0, 1, ...,
⌊n
2

⌋
} , are of interest. The reduction for other k values, also negative ones, is

accomplished by the rules

o) R
(n)
n+k = −R(n)

k , i) R
(n)
−|k| = −R(n)

|k| , ii) for k ∈ {
⌊n
2

⌋
+ 1, ..., n} : R

(n)
k = R

(n)
n−k . (8)

These rules follow from eq. (1) with the trigonometric definition (with the specific value of ρ(n)) of the
S-polynomials, and therefore also negative values for the DSRs show up (the interesting DSRs are, of
course, positive). i) follows also from S(−|n|, x) = −S(|n| − 2, x) which derives from a backward use of
the recurrence (given later in eq. (12)). This rule does therefore not depend on the special choice of the
variable x, in contrast to the rules o) and ii). With negative k one counts the diagonals in the clockwise
direction. ii) is used to translate from the lower to the upper half-plane.

The product formula for Chebyshev S-polynomials of different degree, but with the same argument, is
well known. See e.g., [1], p.782, 22.7.25, for the U -polynomials, and replace the T -polynomials by the
S-polynomials via the trace formula given in eqs (2) and (3).

S(m− 1, x)S(n − 1, x) =
1

4 ((x2 )
2 − 1)

[S(n +m,x) − S(n+m− 2, x)−

S(n−m,x) + S(n−m− 2, x) ] n ≥ m . (9)

For our purpose x = ρ(n) = R
(n)
2 6= ±2 but its special form is for this formula not of interest . It is in

fact symmetric under exchange of n with m if the rules for negative indices on the S-polynomials, stated
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above, are employed. Here we restrict to n ≥ m in order to have non-negative indices. Thus the product
formula for the DSRs, now with x = ρ(n), but without using its specific value, is

(4 − (R
(n)
2 )2)R(n)

m R
(n)
k = R

(n)
k−m+1 − R

(n)
k−m−1 − R

(n)
k+m+1 + R

(n)
k+m−1 , k ≥ m > 0 . (10)

For m = 0 this becomes trivial. This is not yet the DPF given by Steinbach in [29] which linearizes

the product of R
(n)
m R

(n)
k . In order to eliminate the pre-factor (4 − ρ(n)2) one can use the three term

recurrence relation of the orthogonal S-polynomials, written for the DSRs by eq. (1) as a special product
formula

[Rec,k](n) : R
(n)
2 R

(n)
k = R

(n)
k+1 + R

(n)
k−1 , k ≥ 0 . (11)

From now on we also use the specific form of ρ(n). Thus also rules o) and ii) of eq. (8) will be

applicable. For k = 0 one uses (see ii)) R
(n)
−1 = −R

(n)
1 = −1, and it becomes trivial. For k = 2

it shows that ρ(n)2 = σ(n) + 1 for all n, if one uses σ(n) := R
(n)
3 . This recurrence can now be

used twice as R
(n)
2 (R

(n)
2 R

(n)
k ) in eq. (10) to produce the following recurrence for two step differences of

R(n)
m R

(n)
k =: p

(n,m)
k ≡ pk

(pk+2 − pk) − (pk − pk−2) = ck − ck−2 , (12)

where we used the abbreviation ck ≡ c
(n,m)
k := R

(n)
k+m+1 − R

(n)
k−m+1. This shows that pk+2 − pk − ck

is k independent. From the inputs p2 − p0 − c0 = 0, due to the recurrence relation eq. (11), and
p1 − p−1 − c−1 = 0 with the help of the rule i) from eq. (8), this leads to the recurrence pk+2 − pk = ck,

with the inputs p0 = 0 and p1 = −p1 = R
(n)
m . The solution for pk is found for even and odd k separately,

where again the rules for negative indices are employed. Both solutions can then be combined as

DPF [m,k](n) : R(n)
m R

(n)
k =

k−1∑

j=0

R
(n)
m+k−(2j+1) , 1 ≤ m ≤ k . (13)

This is finally the DPF found by Steinbach in [29] and gives a linearization of the DSR products. We
need only to consider m ≥ 2 (m = 1 becomes trivial), and due to the symmetry of this formula under
the transformation k → n−k (using the rules of eq. (8)) is suffices to consider k ∈ {1, 2, ...

⌊
n
2

⌋
}. Hence

one has only to consider the

(⌊n
2

⌋

2

)
products for 2 ≤ m ≤ k ≤

⌊
n
2

⌋
.

The DPF formula looks un-symmetric with respect to m ↔ k, but it is, in fact, symmetric because
m−1∑

j=0

R
(n)
k+m−(2j+1) for k < m reduces, due to cancellations after using the rule i) from eq (8), to the

expected sum with only k terms. One can see this for even and odd m > k separately, remembering

that R
(n)
0 = 0 in the former case.

The idea is to work out, for a given n ≥ 4, all DPFs of interest, using the rules from eq. (8), especially

i) and ii) in order to write all

(⌊n
2

⌋

2

)
products as linear combinations of the DSRs.

Example 1: n = 7 heptagon, treated in detail in reference [29]. Here we recapitulate and link to OEIS
[27] sequences (the analoga of Fibonacci numbers in the pentagon case). Superscripts and arguments 7
are suppressed. [2, 2]: ρ2 = σ + 1. [2, 3]: ρ σ = σ + ρ + 0. [3, 3]: σ2 = ρ + σ + 1. Here, R5 = R2

was used. This shows that the Q-vector space basis is at most < 1, ρ, σ >. It will be shown to be indeed
the heptagon basis in sect. 4, where the power basis will be used instead.
With these DPFs one can compute all powers of interest in the heptagon basis < 1, ρ, σ > (this has
already been done explicitely for σ in [29], p. 28).

ρk = A052547(k − 2) 1+ A052547(k − 1) ρ+ A006053(k)σ, k ≥ 0,
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ρ−k = A077998(k) 1+ A077998(k − 1) ρ− A006054(k + 1)σ, k ≥ 0 ,
σk = A106803(k − 1) 1+ A006054(k − 1) ρ+ A106803(k)σ, k ≥ 0,
σ−k = (σ − ρ)k = A052547(k) 1− A006053(k + 1) ρ− A052547(k − 1)σ, k ≥ 0,
(ρ σ)k = (ρ + σ)k = A120757(k) 1+ —A006054(k − 1)| ρ + 4 A181879(k)σ, k ≥ 0,
(ρ σ)−k = (ρ + σ)−k = A085810(k) 1 + (−1)k A181880(k− 2) ρ + (−1)k+1 A116423(k+1)σ, k ≥ 0.

One can also compute
1

a 1 + b ρ + c ρ
= A 1 + B ρ + σ and find with N(a, b, c) = a3 − b3 − c3 −

2 a b2 − a b c + a2 b + b2 c + 2 a2 c − a c2 + 2 b c2

A =
1

N(a, b, c)
(a2 − b2 + a b + 2 a c − b c) , B =

1

N(a, b, c)
(b2 − c2 + a b) , (14)

C =
1

N(a, b, c)
(c2 − b2 + a c − b c). (15)

Example 2: n = 9 (Enneagon), where we use ρ = R
(9)
2 , σ = R

(9)
3 , τ = R

(9)
4 . [2, 2] : ρ2 = 1 + σ,

[2, 3] : ρσ = ρ + τ , [2, 4] : ρτ = σ + τ , [3, 3] : σ2 = 1 + τ + σ, [3, 4] : σ τ = ρ + σ + τ ,

[4, 4] : τ2 = 1 + ρ + σ + τ . This DSR-algebra (over Q) shows that not all ratios (including R
(n)
1 = 1)

are linear independent: τ (ρ − 1) = σ = ρ2 − 1 = (ρ + 1) (ρ − 1), i.e., τ = ρ + 1. Therefore,
ρ3 = ρ (σ + 1) = 2 ρ + τ + 2 = 3 ρ + 1 . In sect. 3 we will see that the algebraic number ρ(9)
has degree 3, and its minimal polynomial is indeed C(9, x) = x3 − 3x − 1. The enneagon basis is
thus < 1, ρ, σ > which can be related to the power basis < 1, ρ, ρ2 > (remember that we use the same
notation for different bases). The reduced DSR-algebra (the algebra modulo C(9, ρ) = 0 ) is ρ2 = 1 + σ,
ρ σ = 1 + 2 ρ, and σ2 = 2 + ρ + σ.

Remark 1: [2, 2] in eq. (13) becomes (R
(n)
2 )2 = R

(n)
3 + 1, showing that for all interesting values n ≥ 4

one has σ(n) := R
(n)
3 = ρ(n)2 − 1 . This is known already from eq (1) for k = 3, and it will be used in

sect. 3 as R
(n)
3 rewritten in terms of the power basis of Q(ρ(n)).

Remark 2: For n = 4 and n = 5 the second diagonal (defining R
(n)
3 ) is not of interest because it is

in the lower half plane. According to eq. (8), ii) R
(5)
2 = R

(5)
3 , hence σ(5) = ρ(5) and the general

relation [2, 2] from eq. (13) between σ(n) and ρ(n) leads to ρ(5) = ρ(5)2 − 1, the golden section formula
ρ(5) = ϕ := (1 +

√
5)/2. In sect. 2 it will be seen that the minimal polynomial for ρ(5) is indeed

C(5, x) = x2 − x − 1.

Instead of deriving the DPF from the product formula for S-polynomials and the rules of eq. (8) one
can prove it directly by induction from the S−recurrence including negative indices in accordance with
these rules.

Proposition 1:

The DPFs [m,k](n), eq. (13) but now for all 2 ≤ m, 2 ≤ k, follow from the recurrence, eq. (11), and
the rules i) and ii) from eq. (8).

Proof: This is shown by double induction. First one shows this for given m ≥ 2 for all k ≥ 2 by
induction over k. Then by induction over m for all k ≥ 2.
The k-induction uses as starter [2, 2](n) which is the recurrence. Assume that [2, k′](n) is true for all
k′ = 2, 3, ..., k − 1. Now (we omit the superscripts) R2Rk = R2 (R2Rk−1 − Rk−2) from the recurrence.
Then use for both terms the induction hypothesis. Note that one obtains for the first term k − 1, and
for the second one k− 2 terms. However, due to rule ii) only two terms survive in each case. (The same
type of cancellation was at work when we remarked above on the symmetry of the DPF formula in m
and k.) Therefore, one obtains R2 (Rk − Rk−2 + 0) − (Rk−1 − Rk−3 + 0) which becomes, after use of
the recurrence applied twice, Rk+1 + Rk−1. This is indeed the desired result for [2, k] if one uses again
rule ii) to get a truncation of the sum after two terms.
The m-induction uses as starter [2, k] for all k ≥ 2, which has just been established. Then assume that
[m′, k] is true for all m′ = 2, 3, ...,m − 1. RmRk = R2Rm−1Rk − Rm−2Rk from the recurrence.
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Assume the induction hypothesis for each term, obtaining, after use of the recurrence for the first sum,
k−1∑

j=0

(Rm+k−(2j+1) + Rm+k−2−(2j+1))−
k−1∑

j=0

(Rm−2+k−(2j+1) which is indeed the assertion after cancellation

of the last two sums. �

As mentioned in the example 2 the DSR-algebra turns sometimes out to be reducible because some DSRs
can be expressed as rational linear combinations of other ones. Later it will become clear that this
happens precisely whenever

⌊
n
2

⌋
− δ(n) > 0, and this is the number of linear dependent DSRs. See

Table 1 for details for n = 3, ..., 12.

We shall see in sects. 3 and 4 that it is simpler to use the power basis of Q(ρ(n)) and the minimal C(n, x)-
polynomials of the algebraic number ρ(n) instead of the DSR-algebra. Then one obtains automatically
the reduced algebra.

3 Minimal polynomial of ρ(n), its zeros, absolute term and factoriza-
tion

The minimal polynomial of an algebraic number α of degree dα is the monic, minimal degree
rational polynomial which has as root, or as one of its roots, α. This degree dα is 1 iff α is rational, and
the minimal polynomial in this case is p(x) = x − α. For the notion ‘minimal polynomial of an algebraic
number’ see, e.g., [22], p. 28 or [25] p. 13.

For the algebraic number ρ(n) := 2 cos
(π
n

)
, for n ∈ N, the degree is δ(1) = 1, and δ(n) =

ϕ(2n)

2
for n ≥ 2 , with Euler’s totient function ϕ(n) = A000010(n). This is the sequence A055034(n). The
sequence of allowed δ values is given in A207333. The array with the indices of the polynomials for given
allowed δ values is shown in A207334. Of course, δ is not multiplicative, e.g., 2 = δ(6) 6= δ(3) δ(3) =

1 · 1 = 1. These polynomials can be obtained from the ones of cos

(
2π

n

)
which are found, e.g., under

A181875/ A181876, and they have been called there Ψ(n, x). See also [17], and [22], Theorem 3.9, p. 37,

for the degree d(n) of these polynomials. From the trivial identity cos
(π
n

)
= cos

(
2π

2n

)
one finds the

minimal polynomial of 2 cos
(π
n

)
, called here C(n, x), from

C(n, x) = 2δ(n) Ψ
(
2n,

x

2

)
. (16)

Therefore the above formula for δ(n) derives from d(2n). These polynomials are given for n = 1, ..., 30
in Table 2, and the first 15 rows of their coefficient array are shown in Table 3. Concerning the parity of
the degree δ one has the following lemma.

Lemma 1: Parity of the degree δ

δ(n) is odd iff n = 1, 2, and pe, with an odd prime p of the form 4 k + 3, k ∈ N0, and e ≥ 1.

Proof: The case n = 1 is clear by definition. For n = 2 one uses the prime number factorization n =

2β
∏N

j=1 p
ej
j , with β ≥ 0 and ej = 1. It follows from the definition that δ(n) = 2β−1

N∏

j=1

(pj − 1) p
ej−1
j .

For β ≥ 2 this is always even. For β = 0 one needs N = 1, otherwise this will be even. For N = 1 one

needs
p− 1

2
to be odd, i.e., p = 4 k + 3 with k ∈ N0. If β = 1 one needs N = 0 in order to have an

odd value. Thus n = 2. �

In order to relate to sect. 2 we are interested here in n ≥ 4. It turns out that these polynomials are in
fact integer (not only rational) polynomials. The proof will use the following lemma based on our divisor
product representation paper [14].
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Lemma 2: Minimal polynomial C(n,x) written as a rational function.

C(n, x) =
p(dp(n), x)

q(dq(n), x)
, (17)

with monic integer polynomials p and q with a certain degree dp(n) and dq(n) = δp(n) − δ(n), respec-
tively.

Proof: Ψ
(
2n, x2

)
is obtained from the unique divisor product representation dpr(2n) defined in [14]

by replacing each a(k) in the numerator, as well as in the denominator, by t(k, x2 ) which is given as a
difference of monic integer polynomials t̂ which have been defined already in eq. (2), multiplied with a
certain prefactor.

t(k,
x

2
) =





1

2
k
2 +1

(
t̂(k2 + 1, x) − t̂(k2 − 1, x)

)
if k is even ,

1

2
k−1
2 +1

(
t̂(k+1

2 , x) − t̂(k−1
2 , x)

)
if k is odd .

(18)

The monic Ψ(2n, x) polynomials have degree d(2n) (see e.g., [13]) which implies that all the prefactors
in this replacement of the a(k)s in dpr(2n) have to become 1/2d(2 n). (This could be formulated as a

separate lemma). E.g., n = 34 with dpr(34) = a(34) a(1)
a(17) a(2) has from the numerator the factor 1/218+1

and from the denominator 29+2, fitting with 1/2d(34) because d(34) = 8. Therefore, one may in the
calculation of C(n, x), found above from Ψ(2n, x2 ), forget about these prefactors in the replacements
altogether. Thus the numerator, resp. denominator, is a product of monic integer polynomials t̂ leading
to the monic integer polynomials p, resp. q, of a certain degree dp(n), resp. dq(n). (One could give
more details on these degrees but this is not important here. Trivially, dp(n) − dq(n) = d(2n). For
the given example n = 34: (18 + 1) − (9 + 2) = 8 from the degrees of the t̂ polynomials.) Because
C(n,x) is a minimal polynomial this rational function allows polynomial division without remainder.
�

Proposition 2: C ∈ Z[x]

C(n, x), the minimal polynomial of ρ(n) = 2 cos
(π
n

)
, is an integer monic polynomial.

Proof: From lemma 2 we have q(dq(n), x)C(n, x) = p(dp(n), x) which leads by induction to the re-
sult that the integer coefficients of the monic polynomials p and q imply integer coefficients for the
monic polynomial C. Call these monic polynomials q(N,x) :=

∑N
l=0 ql x

l, C(M,x) :=
∑M

k=0 ck x
k and

p(N +M,x) :=
∑N+M

l=0 pl x
l with qN = 1, cM = 1 and pN+M = 1. Collecting terms for xN+M−j, for j =

(0), 1, 2, ..., M , one obtains the formula for the C-coefficient cM−j in terms of lower indexed ones: cM−j =

pN+M−j −
j∑

k=1

cM−j−k qN−k. With this the inductive proof on j, using the integer coefficients of q, p and

the integer higher C-coefficients due to the induction hypothesis becomes obvious. The starting point is
the trivial j = 0 case. �

Next we give all the zeros of C(n, x). This follows directly from the knowledge of all zeros of Ψ(2n, x2 )
(see, e.g., [13], from p. 473 of [30])

Proposition 3: All zeros of C

C(n, x) =

n−1∏

k=1
gcd(k,2n)=1

(
x − 2 cos

(
π k

n

))
, n ∈ N . (19)

In the product the index k starts with 1 because gcd(0, 2n) = 2n, and it stops at n − 1 for all n ≥ 2
because gcd(n, 2n) = n. One has to omit the even k values > 0 which leads to (for n = 1 one takes
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only l = 0 in the following product)

C(n, x) =

⌊n−2
2 ⌋∏

l=0
gcd(2 l+1,n)=1

(
x − 2 cos

(
π (2 l + 1)

n

))
. (20)

Proof: This is a simple consequence of the mentioned known results for Ψ(2n, x2 ). It implies, en passant,
a formula for the known degree δ(n) (see A055034) in terms of the number of factors of this product.
�

The following proposition lists the nonnegative and negative zeros of C for prime n. A vanishing zero
(which will be counted later as positive) appears only for n = 2.

Proposition 4: Non-negative and negative zeros of C(p,x)

i) If n = 2 then C(2, 0) = 0 , and this is the only case with a vanishing zero.

ii) If n is an odd prime 1 (mod 4) then the number of positive and negative zeros coincides, and this
number is n−1

4 . These zeros are (−1)k+1 2 cos
(
π k
n

)
, with k values 1, 2, ..., n−1

2 = δ(n).
iii) If n is an odd prime 3 (mod 4) then the number of positive zeros exceeds the number of negative
ones by one, and the number of negative ones is n−3

4 . These zeros are (−1)k+1 2 cos
(
π k
n

)
with k values

1, 2, ..., n−3
2 , and an extra positive zero appears for k = n−1

2 = δ(n) .

Proof:

i) Vanishing zeros require n ≡ 2 (mod 4) from k
n = 1

2 and k odd in eq. (20). A vanishing zero appears
for n = 2. For other such n values, n = 4K + 2, K ≥ 1, the odd k = n

2 > 1 divides n, hence it does
not appear in the product of eq. (20).

For odd primes n = p = 2 q + 1 the product in eq. (20) is unrestricted, and there are (q−1) + 1 =
p− 1

2

factors, in accordance with the degree δ(p) =
ϕ(2 p)

2
. The cos function will produce negative zeros for

2 l + 1

p
>

1

2
, i.e., for 2 l ≥ q.

ii) n = p = 4K + 1 means that l = 0, 1, ..., K−1 lead to positive zeros, and l = K, K+1, ..., 2K−1

to negative ones. In both cases there are K =
n− 1

4
such zeros. For the l values leading to negative

zeros one can use the formula cos

(
π

p
(2 l + 1)

)
= − cos

(
π

p
(p − (2 l + 1))

)
. In this way even multiples

of
π

p
appear, and one produces, counted backwards, beginning with the largest l value, the new values

2, 4, ..., 2K. This proves ii). As a test consider n = 13, K = 3: the 2 l + 1 values for the positive
zeros are 1, 3, 5, and the ones for the negative ones are 7, 9, 11. The latter become (we use underlining
to indicate that they come with a minus sign in the final formula) 6, 4, 2. Rearranged these values are
1, 2, 3, 4, 5, 6, as given in ii).

iii) For n = p = 4K + 3 a similar analysis leads to l = 0, 1, ..., K, and l = K+1, ..., 2K for positive,

and negative zeros, respectively. This shows that the number of negative zeros is K =
p − 3

4
, and the

number of positive ones exceeds the one for negative zeros by one. Again, the odd values leading to nega-
tive zeros are transformed to even ones 2, 4, ..., 2K with a minus sign in front of 2 cos. Take, e.g., n = 19,
K = 4, with the new k values of iii) 1, 2, 3, 4, 5, 6, 7, 8, 9. �

For general values n one can also find the number of positive and negative zeros of C(n, x). In the
non-prime or non-power-of-2 case the gcd restriction in the product excludes certain l values. Therefore
one has to eliminate from the unrestricted 2 l + 1 values in the product of eq. (20) all odd multiples
for each odd prime dividing n. Multiples of 2 are irrelevant for even n , therefore only the odd primes
dividing n are of interest. This shows that the prime factors of the squarefree kernel of n, denoted here by
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sqfk(n), i.e., the largest squarefree number dividing n (see A007947) will be of interest. This squarefree
kernel is also known as radical of n, denoted by rad(n). We will denote the set of primes of this kernel
by sqfkset(n), E.g., sqfkset(23 · 32 · 11) = {2, 3, 11}, sqfk(23 · 32 · 11) = 66 (strip off all exponents in
the prime number factorization of n). Because one may encounter multiple counting (e.g., 15 is hit by
the multiples of 3 as well as 5 for any n which has in its squarefree kernel set the primes 3 and 5, and
which is larger than 16) one can employ PIE, the principle of inclusion-exclusion, e.g., [5], p. 134, to get
a correct counting.

Proposition 5: Number of positive and negative zeros of C(n,x)

i) If n = 2m, m ≥ 1, one has for m = 1 a vanishing zero (see proposition 4 i)). For m ≥ 2 the number

of positive zeros, which is
n

4
, coincides with the one for negative ones. This is in accordance with the

degree δ(2m) = 2m−1 =
n

2
. These zeros lie symmetric: ± 2 cos

(π
n
(2 l + 1)

)
, l = 0, 1, ...,

n

4
− 1.

ii) If n = 1 then there is only the negative zero −2. If n ≥ 3 is not a power of 2 then the number of
positive zeros, called δ+(n), is

δ+(n) = K(n) +

M(n)∑

r=1

(−1)r
∑

<i1,i2,...,ir>

⌊
1

2

(
L(n)

pi1 · · · pir
− 1

)⌋
, (21)

where M(n) (sometimes called ω(n)) is in the odd n case the number of elements (cardinality) of the
set sqfkset(n), denoted by |sqfkset(n)|, (see A001221). M(n) is for even n the number of odd primes
in sqfkset(n), i.e., |sqfkset(n)| − 1. This is because multiples of 2 are irrelevant here. The sum

< i1, i2, ..., ir > extends over the

(
M

r

)
combinations 1 ≤ i1 < i2 < ... < ir ≤ M . Only the odd

primes from the set sqfkset(n) enter. The values K(n) and L(n) depend on the parity of n and they are
given by

α) n even : K(n) =

⌊
n− 2

4

⌋
, L(n) = 2K(n) + 1 , (22)

β1) n odd, 1(mod 4) : K(n) =
n− 5

4
, L(n) = 2K(n) + 1 =

n− 3

2
, (23)

β2) n odd, 3(mod 4) : K(n) =
n− 3

4
, L(n) = 2K(n) + 1 =

n− 1

2
. (24)

Note that also negative values for the floor function may appear. In this way the pure prime case from
proposition 4 is also included.

iii) If n ≥ 3 is not a power of 2 then the number of negative zeros, called δ−(n), is

δ−(n) = N(n) +

M(n)∑

r=1

(−1)r
∑

<i1,i2,...,ir>

{⌊
1

2

(
P (n)

pi1 · · · pir
− 1

)⌋
−

⌊
1

2

(
L(n)

pi1 · · · pir
− 1

)⌋}
, (25)

where M(n) and L(n) are as above, and

α) n even : N(n) =
n− 2

2
−

⌊
n− 2

4

⌋
, P (n) = n − 1 , (26)

β1) n odd, 1(mod 4) : N(n) =
n− 1

4
, P (n) = n − 2, (27)

β2) n odd, 3(mod 4) : N(n) = K(n) =
n− 3

4
, P (n) = n − 2. (28)

Proof:
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i) All l = 0, ..,

⌊
n− 2

2

⌋
= 2m−1 − 1 values contribute to the product of eq. (20), compatible with the

degree δ(2m) =
ϕ(2m)

2
= 2m−1 =

n

2
. The negative zeros appear for 2 l+1 = 22m−2+1, ..., n−1, hence

there are n
4 of them. With the cos formula given in the proof of proposition 4 ii) with p → n, they can

be rewritten in the notation, also used in the above context, when read backwards, as 1, 3, ..., 2m−1 − 1.
Therefore one obtains the same cos arguments like for the n

4 positive zeros, only the overall sign is
different.

ii) For n ≥ 3, not a power of 2, one uses PIE to count the positive zeros. For this consider the odd
multiples of some odd number a, say (2 k + 1) a, (only such multiples come up as 2 l + 1 values in
the product (20)) up to kmax such that all positive zeros are reached. If the largest 2 l + 1 value in the

product which leads to a positive zero is n̄, then kmax =

⌊
1

2

( n̄
a

− 1
)⌋

, and there are kmax + 1 of these

odd multiples of a. In the following application of PIE a will be taken as any odd prime or product of
odd primes from the set sqfkset(n).

α) Case even n, not a power of 2: The counting of the positive zeros starts at level r = 0 with all

positive ones in the unrestricted product eq. (20). There are

⌊
n− 2

4

⌋
+ 1 of them (the l values are

0, 1, ...,

⌊
n− 2

4

⌋
). In the next step, r = 1, all odd multiples of every odd prime pi1 in sqfkset(n) not

exceeding 2

⌊
n− 2

4

⌋
+ 1 are discarded (there are M(n) such primes, where M(n) := |sqfkset(n)| − 1).

This leads to a subtraction of the form −
M(n)∑

i1=1

⌊
1

2

(
L(n)

pi1
− 1

)⌋
+ 1 with L(n) given in the proposition

ii) α). Now double subtractions may have appeared and one adds, at step r = 2, all odd multiples of
the product of two odd primes from sqfkset(n), call them pi1 pi2 with i1 < i2 (because no problem of

over-subtraction appeared for i1 = i2). This leads to the term +
∑

1≤ i1<i2 ≤M(n)

⌊
1

2

(
L(n)

pi1 pi2
− 1

)⌋
+ 1.

Now one has to correct for triple products in the step r = 3 , etc., up to level r = M(n). This leads

to the formula given in part ii) α) if one observes that the +1 term in each r-sum becomes a
(M(n)

r

)

term because of the number of terms of this sum. Then, because the alternating sum over row M(n) in
Pascal’s triangle (see A007318) vanishes ((1 − 1)M(n) = 0), all these terms add up to −1 (the missing

r = 0 term). Therefore the formula starts with

⌊
n− 2

4

⌋
, the K(n) value given in ii) α), and only the

floor term remains for each r-sum .

β1) The counting of the positive zeros in the odd n case distinguishes the two cases 1 (mod 4) and
3 (mod 4). Here we discuss the former one. The procedure is the same as the one given for case α).
One has just to determine the boundary values for the lmax value leading still to a positive zero. This is

lmax = K − 1, if n = 4K +1, i.e.,
n− 5

4
. Hence there are lmax + 1 such l values to start with at level

r = 0. Again the extra +1 can later be taken as r = 0 term
(M(n)

0

)
for the vanishing alternating sum

over row No. M(n) in Pascal’s triangle. Here M(n) := |sqfkset(n)|. Therefore the PIE formula starts

with the K(n) given in β1) of the proposition. The L(n) of the PIE sum is now 2
n− 5

4
+ 1 =

n− 3

2
,

the largest 2 l + 1 value leading to a positive zero.

β2) In the case M(n) := |sqfkset(n)|, n = 4K + 3 the maximal 2 l + 1 value leading to a positive

zero, the L(n) in the formula, is 2K + 1 =
n− 1

2
, coming from the largest l value which is K. This K

is the K(n) in the formula claimed for this case β2).

iii) For the number of negative zeros the counting is done by finding all the odd multiples of odd primes,
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or products of them, which cover the 2 l + 1 range for the negative zeros. This is the difference of the
number of such multiples for the whole range and the range for the positive zeros.

α) If n is even, not a power of 2, the whole range is determined by lmax + 1 = n − 1. From the above
ii) α) case one knows the corresponding upper bound for the positive zeros, therefore the PIE formula

has N(n) = (
n− 2

2
+ 1) − (

⌊
n− 2

4

⌋
+ 1), the number of factors in the unrestricted product which

lead to negative zeros, which is the value claimed in the proposition iii) α). Accordingly, P (n) = n− 1
and L(n) = 2

⌊
n−2
4

⌋
+ 1 as given in eq. (26).

β1) In this n ≡ 1 (mod 4) case the maximal number 2 l + 1 in the product is n − 2, determining

P (n). The corresponding number L(n) for the positive zeros is taken from above as
n− 3

2
. There are

N(n) =

(
n− 3

2
+ 1

)
−

(
n− 5

4
+ 1

)
=

n− 1

4
unrestricted factors in the product with negative

zeros.

β2) In this n ≡ 3 (mod 4) case one has also P (n) = n − 2 like for any odd n. L(n) is taken from the

corresponding ii) case as
n− 1

2
, and N(n) is obtained from

(
n− 3

2
+ 1

)
−

(
n− 3

4
+ 1

)
=

n− 3

4
.

�

We give the first entries of the δ+(n) and δ−(n) sequences. Remember that the vanishing zero for n = 2
is here counted as positive. The A-numbers given for δ−(2 k) and δ−(2 k) are conjectured.

n even:

δ+(2 k), k = 1, 2, ...; A055034 : [1, 1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 4, 6, 6, 4, 8, 8, 6, 9, 8, 6, 10, ...],

δ−(2 k), k = 1, 2, ...; A055034 with first entry 0 : [0, 1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 4, 6, 6, 4, 8, 8, 6, 9, 8, 6, 10, ...],

n odd, 1(mod 4):

δ+(4 k + 1), k = 0, 1, ...; [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, ...],

δ−(4 k + 1), k = 0, 1, ...; [1, 1, 2, 3, 4, 4, 5, 7, 6, 9, 10, 6, 11, 13, 10, 15, 12, 12, 18, 16, 14, ...],

n odd, 3(mod 4):

δ+(4 k + 3), k = 0, 1, ...; [1, 2, 3, 2, 5, 6, 5, 8, 6, 6, 11, 12, 8, 10, 15, 10, 17, 18, 10, 20, ...],

δ−(4 k + 3), k = 0, 1, ...; [0, 1, 2, 2, 4, 5, 4, 7, 6, 6, 10, 11, 8, 10, 14, 8, 16, 17, 10, 19, 20, ...].

The start of the sequences for odd n is therefore

δ+(2 k + 1), k = 0, 1, ...; [0, 1, 1, 2, 1, 3, 3, 2, 4, 5, 2, 6, 5, 5, 7, 8, 4, 6, 9, 6, 10, 11, ...],

δ−(2 k + 1), k = 0, 1, ...; [1, 0, 1, 1, 2, 2, 3, 2, 4, 4, 4, 5, 5, 4, 7, 7, 6, 6, 9, 6, 10, 10, 6, 11, ...].

Finally, combining for all n:

δ+(n), n = 1, 2, ...; A193376 : [0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 3, 3, 2, 4, 4, 3, 5, 4, 2, 5, 6, 4, 5, ...],

δ−(n), n = 1, 2, ...; A193377 : [1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 4, 4, 3, 4, 4, 4, 5, 5, 4, 5, 6, ...].

On can check that δ(n) − (δ+(n) + δ−(n)) vanishes in each case.

Observe that from these examples it seems that δ+(2 k) = δ−(2 k) =A055034(k) = δ(k) for k ≥ 2.

This is compatible with δ(2 k) = 2 δ(k), i.e.,
ϕ(4 k)

2
= 2ϕ(2 k) for these k values. The latter eq., which

holds also for k = 1, can be checked by considering the two cases k = 2e(1) · (odd number) and k odd.

Recall that δ(2) = δ(1) = 1, because δ(1) was special (it is not
ϕ(2)

2
).

Zeros of C(n,x) in the power basis < ρ(n)0 = 1,ρ(n)1, ...,ρ(n)δ(n)−1 >

As will be explained in the next section, the minimal polynomial C(n, x) with degree δ(n) leads to the
splitting field Q(ρ(n)) which is a simple field extension of the rational field Q, and the degree of Q(ρ(n))
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over Q, the dimension of Q(ρ(n)), considered as a vector space over Q, is just the degree of C. In standard
notation [Q(ρ(n)) : Q] = δ(n). Therefore it is interesting to write the zeros of C in the power basis

for this Q-vector space. This task is accomplished by using for the zeros ξ̃
(n)
l = cos

(π
n
(2 l + 1)

)
, l ∈

{0, 1, ...,
⌊
n− 2

2

⌋
} with gcd(2 l + 1, n) = 1 (see eq. (20)),the formula ξ̃

(n)
l = t̂(2 l + 1, ρ(n)) = 2T (2 l +

1,
ρ(n)

2
) (compare with eq. (2)). Remember that the integer coefficient array for these t̂-polynomials is

shown in A127672. Of course, one has to reduce this integer polynomials using C(n, ρ(n)) = 0, i.e., one
has to replace ρ(n)δ(n) (and higher powers) by an integer polynomial of lower degree. This can be done on
a computer and Table 4 has been found with the help of Maple13 [18]. For example, the zeros of C(15, x)

are ξ̃
(15)
1 = ρ(15), ξ̃

(15)
2 = −2 + 3 ρ(15) + ρ(15)2 − ρ(15)3, ξ̃

(15)
3 = −1 − 4 ρ(15) + ρ(15)3, ξ̃

(15)
4 =

2 − ρ(15)2 . Here the reduction has been performed with ρ(15)4 → −ρ(15)3 + 4 ρ(15)2 + 4 ρ(15) − 1.
One can check these zeros which have approximate values 1.956295201, 0.209056928, −1.338261216 and
−1.827090913, respectively. We will call the zeros with increasing value ξ1, ξ2, ..., ξδ(n).

Our next objective is to compute C(n, 0) (the sign and the number multiplying x0, also called the absolute
term) and relate it first to the cyclotomic polynomial cy(n, x) (the minimal polynomial of the complex

algebraic number e
2π i
n , see e.g., [30] or [9], p. 149, Exercise 50 a and b), evaluated at x = −1, which is

cy(n,−1) = (−1)ϕ(n)
n−1∏

k=1
gcd(k,n)=1

(1 + e2π i k
n ) , n = 2, 3, ... (29)

We used the fact that the product in the definition of cy(n, x) has ϕ(n) factors (the degree as minimal
polynomial). For n = 1 one has cy(1,−1) = −2, which fits this formula if one defines ϕ(1) := 1 and

takes the undefined product as 1. One may rewrite this for n ≥ 2 by extracting e
π i
n , using for the sum

of the ϕ(n) terms the formula

2

n2

n−1∑

k=1
gcd(k,n)=1

k =
ϕ(n)

n
, n = 2, 3, ... (30)

This is a formula listed by R. Zumkeller under A023022 which is found in[2], p. 48, exercises 15 and 16,
written such that both sides depend only on the distinct primes in the prime number factorization of n.

For the r.h.s. there is the well known formula [2], p. 27,
ϕ(n)

n
=

M(n)∏

j=1

(
1 − 1

pj

)
=

∑

d|n

µ(d)
n

d
, if n

has the distinct prime factors pj, j = 1, 2, ...,M(n) = A001221(n) = |sqfkset(n)| (see above for the
notion ‘squarefree kernel’). The Möbius function µ entered here (see A008683). The PIE proof of eq.
(30), given in the appendix A, uses this form of ϕ(n). If one uses also ei π = −1 the rewritten eq. (29)
becomes

cy(n,−1) = (−1)
ϕ(n)
2

n−1∏

k=1
gcd(k,n)=1

2 cos

(
π
k

n

)
, n = 2, 3, .... (31)

This can also be related to a special Sylvester sequence. In general the complex cyclotomic Sylvester-
numbers Sy(a, b;n) are related to the sequence with three term recurrence fn = a fn−1 + b fn−2,
which has characteristic polynomial x2 − a x − b with zeros α ≡ α(a, b) = (a +

√
a2 + 4 b)/2 and

β ≡ β(a, b) = (a −
√
a2 + 4 b)/2. The definition is (see e.g., [19])

Sy(a, b;n) :=

n−1∏

k=1
gcd(k,n)=1

(α − β e2π i k
n ) , n = 2, 3, ... (32)
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For n = 1 one takes Sy(a, b; 1) = α − β. For our purpose the values are (a, b) = (0,−1), i.e.,
(α, β) = (i,−i), and

Sy(0,−1;n) := (−1)
ϕ(n)
2

n−1∏

k=1
gcd(k,n)=1

(1 + e2π i k
n ) , n = 2, 3, ..., (33)

with Sy(0,−1; 1) = 2 i. This can be rewritten, using again eq. (30) and ei π = −1, as

Sy(0,−1;n) = (−1)ϕ(n)
n−1∏

k=1
gcd(k,n)=1

2 cos

(
π
k

n

)
, n = 2, 3, .... (34)

Therefore
Sy(0,−1;n) := (−1)

ϕ(n)
2 cy(n,−1) , n = 2, 3, .... (35)

One could also include the n = 1 case, with ϕ(1) := 1 if one takes
1

iϕ(n)
instead of the prefactor.

After these preliminaries back to the number C(n, 0).

Proposition 6: C(2m,0), m ∈ N

C(2m, 0) = (−1)
ϕ(4m)

2
+ ϕ(2m) Sy(0,−1; 2m) = (−1)

ϕ(4m)
2

+ ϕ(2m)
2 cy(2m,−1) , m ∈ N . (36)

Proof: Use eqs. (19) and (35). The number of factors in eq. (19) with n = 2m is
ϕ(4m)

2
, the degree

δ(2m). Note that the restriction in the Sy(0,−1; 2m) product is gcd(k, 2m) = 1, while in the C(2m, 0)
product it is gcd(k, 4m) = 1, but this just says that only odd ks can contribute in both cases, and those
odd numbers ≤ 2m − 1 dividing 4m or 2m have to be omitted. Both restrictions exclude the same odd
numbers. �

Corollary 1: C(2p,0), p an odd prime

for odd prime p : C(2 p, 0) = (−1)
p−1
2 p . (37)

Proof:

This follows immediately from eqs. (19) and (31) if one uses the known formulae cy(2 p, x) = cy(p,−x),
cy(p, 1) = p, and evaluates the ϕ functions to obtain the sign. This formula follows from cy(n, x) =∏

d|n

(xd − 1)µ(
n
d
) where the multiplicative Möbius function (with µ(p) = −1) enters (see, e.g., [9], exercise

50 b., solution p.506).

Proposition 7: C(2m,x), m ∈ N0

C(2m, x) = t̂(2m−1, x) , m ∈ N, (38)

with the integer polynomials t̂ defined in eqs. (2) and (3) in terms of Chebyshev T - or S−polynomials.

Proof: Use eq. (16) and the Note added to the link [13], where it was shown in eq. (8) that

22
m−1

Ψ
(
2m+1,

x

2

)
= 2T

(
2m−1,

x

2

)
=: t̂(2m−1, x), for m = 1, 2, ... . It is clear that C(1, x) = x + 2.

This proposition will later be generalized in theorem 1A. �

Corollary 2: C(2m,0), m ∈ N0

From the proposition 7 and the known fact that T (2n, 0) = (−1)n follows that

C(1, 0) = +2, C(2, 0) = 0, C(22, 0) = −2, C(2m, 0) = +2, m ≥ 3 . (39)

Note that a standard formula for the cyclotomic polynomials cy(2m, x) which involves divisors (see e.g.,
[9], p. 149, Exercise 50 b, with Ψm(x) ≡ cy(m,x)) leads to undetermined expressions for cy(2m,−1) if
m ≥ 1.
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For the following theorem 1A on a formula for C(n, x) for even n, based on the divisor product represen-
tation (dpr) of numbers [14], we need two lemmata.

Lemma 3: Pairing in dpr(2m)

In the divisor product representation of an even number 2m, m ∈ N, for each a-factor in the numerator
(resp. denominator) one finds exactly one a-factor in the denominator (resp. numerator) with argument
ratio either 1 : 2 or 2 : 1.

Proof:

Due to the ∗-multiplication property of dprs (see the theorem in [14]) it is sufficient to prove this
lemma for dpr(2 p1 · · · pN ) with odd primes p1, ..., pN . Indeed, if the prime factorization of 2m is
2k+1 pe11 · · · peNN , with k ∈ N0 and odd primes pj and positive exponents ej , for j = 1, ..., N , then

dpr(2m) = (2k pe1−1
1 · · · peN−1

N ) ∗ dpr(2 p1 · · · pN ) and the pairing property of the latter dpr will be pre-
served after multiplication of each argument. Now the proof of the pairing property for dpr(2 p1 · · · pN )
becomes elementary, once one splits the products in eq. (7) of [14] (note that N in this reference is now
N +1) into those a-factors which are even (i.e., contain the even prime 2) and those which are odd (i.e.,
those composed of only odd primes). Indicate a-factors with odd arguments, being the product of k odd
primes, by ao(.(k).). Then any a-factor in the numerator (resp. denominator) with some even argument
2n is found in the denominator (resp. numerator) exactly once with the argument n. This is because for

each factor in the numerator product Π a(2 .(N − 2 j).), with j ∈ {1, ...,
⌊
N

2

⌋
}, say, a(2 pi1 · · · piN−2 j

),

there is exactly one factor in the denominator product Π ao(.(N − 2 j).), namely the one which uses
the same N − 2 j odd primes a(pi1 · · · piN−2 j

). Similarly, for each a-factor in the denominator product

Π a(2 .(N − (2 j + 1)).), with j ∈ {0, ...,
⌊
N − 1

2

⌋
}, there is exactly one factor in the numerator product

Π ao(.(N − (2 j + 1)).). The first factor in the numerator, a(2 p1 · · · pN ) (j = 0) is paired with the single
odd argument a-factor of the first product in the denominator Π ao(.(N).) = a(p1 · · · pN ) .
Note, that the example for the primorial A002110(5) = 2310, given in [14], table 2 shows that the
pairing occurs in general not between numerator and denominator factors at the same position, given the
ordering prescription indicated by O (falling arguments) in eq. (7) in [14]. See the fifth position in the
N = 5 case there.

Recall also, for later purposes, that because dpr(2m) has the same number of factors in the numerator
and in the denominator, viz 2N ( this balance holds true for all dpr(n), n ≥ 2, due to proposition 5 in
[14]), after the split into even and odd arguments the number of pairs with even argument in the numera-
tor matches the one with even argument in the denominator. This will later lead to a balanced formula for
C(2m,x) in terms of t̂-polynomials (the same number of t̂s in the numerator and in the denominator, viz
2N−1) . �

Lemma 4:

t̂(n2 + 1, x) − t̂(n2 − 1, x)

t̂(n4 + 1, x) − t̂(n4 − 1, x)
=

S(n2 + 1, x)

S(n4 − 1, x)
= 2T

(n
4
,
x

2

)
= t̂

(n
4
, x

)
, for n ≡ 0 (mod 4) . (40)

This identity involves the integer polynomials t̂ introduced earlier in eqs. (2) and (3).

Proof:

Use the known identity for Chebyshev polynomials, [20], p. 261, first line, specialized, T (m + 1, x) −
T (m − 1, x) = 2 (x2 − 1)U(m − 1, x), written for x replaced by

x

2
, with S(m − 1, x) = U(m − 1,

x

2
)

and the definition of the t̂-polynomials from eq. (2). For n ≡ 0 (mod 4) this identity can be used

in the numerator as well as in the denominator. The n−independent factor (
x

2
)2 − 1 drops out if

x 6= ±2. However, the lemma holds also for these x−values as can be seen after applying l’Hôpital’s
rule, using the well known identity T ′(x, n) = nU(n − 1, x). In the second to last step the well known
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identity, [20] p. 260, last line, written as 2T
(
m,

x

2

)
S(m − 1, x) = S(2m − 1, x) has been employed.

�

Theorem 1A: C(2m,x), m ≥ 1, in terms of t̂-polynomials

With the prime number factorization of 2m = 2k pe11 · · · peNN with k ∈ N, odd primes pj and positive
exponents ej , j = 1, ..., N , one has

C(2m,x) =
t̂(2k−1 pe11 · · · peNN , x)Π t̂(2k−1

∗(N − 2)., x)Π t̂(2k−1
∗(N − 4)., x) · · ·

Π t̂(2k−1
∗(N − 1)., x)Π t̂(2k−1

∗(N − 3)., x) · · ·
. (41)

with t̂(2k−1
∗(0)., x) = t̂(2k−1 pe1−1

1 pe2−1
2 · · · peN−1

N , x), and the products Π t̂(2k−1
∗(K)., x) are over the(N

K

)
factors with K primes from the set {p1, p2, ..., pN} multiplied by pe1−1

1 pe2−1
2 · · · peN−1

N , i.e., K-

products of the form t̂(2k−1 pe1−1
1 pe2−1

2 · · · peN−1
N pi1 pi2 · · · piK , x). We used ∗(k). instead of .(k). for the

indices of the t̂ polynomials to remind one of the extra factor (without the powers of 2 because the even
prime has been extracted everywhere) due to the ∗-multiplication.

Before we give the proof an example will illustrate this theorem.

Example 3: k = 1, N = 2

C(1350, x) = C(2 · 33 52, x) =
t̂(33 52, x) t̂(32 5, x)

t̂(33 5, x) t̂(32 52, x)
=

t̂(675, x) t̂(45, x)

t̂(135, x) t̂(225, x)
. (42)

Proof:

This is based on [14] applied for the minimal polynomials Ψ
(
4m, x2

)
(see the definition for C(2m,x)

given in eq. (16)). Let 2k+1 pe11 · · · peNN be the prime number factorization for 4m. Only the squarefree
kernel 2 p1 · · · pN is important due to the theorem in [14] for the divisor product representations (dprs)
and the ∗-multiplication. This means that one has to multiply after the computation of Ψ(2 p1 · · · pN ),
using proposition 1 of [14], the first argument, the index in conventional notation, of each factor t(ni, x)
in the the numerator, and of each t(mi, x) in the denominator (see [14], eq. (1)) with the number
2k pe1−1

1 pe2−1
2 · · · peN−1

N . Here the pairing lemma 3 is crucial which carries over to the indices of the t-
factors in the numerator and denominator of [14], eq. (1). Because there is always at least one factor of
2 in the number which multiplies every t index after the ∗-multiplication, the pairing will occur always
between indices which are 0 (mod 4) and 0 (mod 2). Then only the n even alternative in the definition

of t
(
n,
x

2

)
from eq. (2) of [14], rewritten here as eq. (18), is relevant. Observe that the prefactors

in this definition of t
(
n,
x

2

)
are not of interest, provided we take 2

(
T
(n
2

+ 1,
x

2

)
− T

(n
2

− 1,
x

2

))

which is the monic integer polynomial t̂
(n
2

+ 1, x
)
− t̂

(n
2

− 1, x
)
. See eq. (18), and the discussion in

connection with lemma 2. C(2m,x) is written here as a rational function of monic integer polynomials.

For each replaced t
(
n,
x

2

)/
t
(n
2
,
x

2

)
(either in the numerator or denominator, depending on where the

larger index appears), one can apply lemma 4. This is how for each such t-quotient one obtains t̂
(n
4
, x

)
.

Here the fact that the larger index of a pair is always equivalent to 0 (mod 4) is important. From the
structure of the numerator and denominator of the original dpr(2m) with the separation of the even
and odd a-arguments (which carries over to the t-indices), discussed in the proof of lemma 3, one now
finds the numerators and denominators of the theorem. Just search the products for the even t-indices.
E.g., Π t̂(2k−1

∗(N − 2)., x) in the numerator of the theorem originates from the quotient of products
Π t(2 .(N − 2)., x2 )

Π to(.(N − 2)., x2 )
before the ∗-multiplication has to be applied. This leads, with eq. (18) and lemma

4, to Π t̂

(
2k+1

4
∗(N − 2)., x

)
after multiplying each t̂ index in the product with 2k pe1−1

1 pe2−1
2 · · · peN−1

N ,

where the ∗ reminds one to multiply each index with this number divided by 2k.
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As announced at the end of the proof of lemma 3 the number of t̂ polynomials in the numerator is
the same as the one for the denominator, viz 2N−1, which is due to the sum in the Pascal-triangle A007318
row No. N over even, resp. odd numbered positions.

Note that this theorem 1A, evaluated for x = 0 leads in general to undetermined expressions, remember-
ing that t̂(n, 0) = 0 if n is odd, and 2 (−1)

n
2 if n is even. However, a correct evaluation (using l’Hôpital’s

rule) has to reproduce the result known from corollary 2.

The following factorization of the monic integer t̂-polynomials is related to theorem 1A.

Theorem 1B: Factorization of t̂-polynomials in terms of the minimal C-polynomials

t̂(n, x) =
∏

d|op(n)

C(2n/d, x) =
∏

d|op(n)

C(2k+1 d, x) , (43)

with op(n) =A000265(n), the odd part of n, and 2k is the largest power of 2 dividing n. The exponents
are k = k(n) =A007814(n), k ∈ N0 .

Before the proof we give an example.

Example 4: n = 10

−2 + 25x2 − 50x4 + 35x6 − 10x8 + x10 = t̂(10, x) = C(20, x)C(4, x) =

(x8 − 8x6 + 19x4 − 12x2 + 1) (x2 − 2) . (44)

Proof: This is modeled after a similar proof in [30].

It is clear that both sides are monic integer polynomials. See the definition of t̂ in eqs. (2), (3) and
proposition 2.
In order to check the degree we consider the even and odd n cases separately. If n = 2k(n) op(n)

with k(n) =A007814(n) ≥ 1 then
∑

d|op(n)

δ(2k+1 d) =
∑

d|op(n)

ϕ(2k+2 d)

2
from the known degree δ of the

C-polynomials, here for index > 1. Due to well known properties of the Euler totient function (see e.g.,

[2], Theorem 2.5, (a) and (c), p. 28 and Theorem 2.2., p. 26) this leads to
2k(n)+2 − 2k(n)+1

2
op(n) = n,

the degree of t̂(n, x). In the odd case, if n = op(n) then
∑

d|n

ϕ(4 d)

2
=

∑

d|n

d = n, again the degree of

t̂(n, x).

For the proof one compares the zeros of both sides. The zeros of t̂(n, x) are x̂
(n)
l = 2 cos

(
(2 l + 1)

π

2n

)

for l = 0, 1, ..., n − 1. This is known from the zeros of the Chebyshev T -polynomials. The zeros

of the C(2k+1 d, x)-polynomials are used in the form given by eq. (20): 2 cos
(
(2 l′ + 1)

π

2k+1 d

)
for

l′ = 0, 1, ..., 2k d − 1, where gcd(2 l′ + 1, 2k+1 d) = 1, i.e., gcd(2 l′ + 1, d) = 1. Because the degrees
match, it is sufficient to show that each zero of t̂(n, x) occurs on the r.h.s.. For n = 2k(n) op(n), with
k(n) =A007814(n), consider gcd(2 l + 1, 2n) = gcd(2 l+ 1, 2k+1 op(n)) = gcd(2 l +1, op(n)) = g (some

odd number). Hence 2 l+1 = (2 l′+1) g, with some l′ and op(n) = d g, i.e., d|op(n). Therefore 2 l + 1

2n
=

2 l′ + 1

2k+1 d
. Thus the t̂(n, x) zero 2 cos

(
(2 l + 1)

π

2n

)
appears on the r.h.s. as one of the C(2k+1 d, x) zeros.

�.

Remark 3: Derivation of Theorem 1A from Theorem 1B

Theorem 1B can be used as recurrence for the C-polynomials in terms of the t̂-polynomials. This is

similar to the case treated in [30] for the minimal polynomials Ψ of
2π

n
(see A181875/A181876 for their
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coefficients). The solution of this recurrence has been given in [14]. Indeed, theorem 1A has been derived
above from this solution. Originally we found theorem 1B starting from theorem 1A building up iteratively
a formula for t̂(2k−1 pe11 · · · peNN , x) in terms of the C-polynomials. We give this formula as a corollary.

Corollary 3: t̂-polynomials in terms of C-polynomials

t̂(2k−1 pe11 · · · peNN , x) =

e1∏

q1=0

e2∏

q2=0

· · ·
eN∏

qN=0

C(2k pq11 pq22 · · · pqNn , x) , k = N, N ∈ N0 . (45)

In order to find a simplified expression for C(2m+ 1, x),m ∈ N0 we need the following lemma in order

to rewrite the quotient
t(even, x2 )

t(odd, x2 )
, given the definition eq. (18).

Lemma 5:

for n = 2M + 1,M ∈ N0 one has

t
(
2n, x2

)

t
(
n, x2

) = 2M−n t̂(n+ 1, x2 ) − t̂(n − 1, x2 )

t̂(M + 1, x2 ) − t̂(M, x2 )
=

1

2M+1

(x2 − 4)S(n − 1, x)

(x − 2)S(2M,
√
2 + x )

(46)

=
x + 2

2M+1

S(n− 1, x)

S(n− 1,
√
2 + x )

. (47)

Here new important monic integer polynomials enter the stage:

Definition 1: q-polynomials

With n ∈ N0 define

q(n, x) :=
S(2n, x)

S(2n,
√
2 + x )

. (48)

That this defines indeed monic integer polynomials of degree n is shown by the next lemma.

Lemma 6:

q(n, x) = (−1)n S(2n ,
√
2 − x ) = S(n, x) − S(n − 1, x) . (49)

Proof:

It is known from the o.g.f. of the Chebyshev S-polynomials that the bisection yields S(2n, y) = S(n, y2 −
2) + S(n − 1, y2 − 2), or S(2n ,

√
x + 2 ) = S(n, x) + S(n − 1, x). With x replaced by −x one has

S(2n,
√
2 − x ) = (−1)n (S(n, x) − S(n − 1, x)) which explains the second equation of the lemma.

Therefore one has to prove S(2n, x) = S(n, x)2 − S(n − 1, x)2. This identity can, for example, be
proved using the o.g.f. for the square of the S-polynomials (for their coefficient table see A181878,
also for the paper [15] given there as a link). This computation was based on the Binet-de Moivre

formula for the S−polynomials. This o.g.f. was found to be
1 + z

1 − z

1

1 + (2 − x2) z + z2
. The o.g.f.

for {S(2n, x)}∞n=0 is (1 + z)/(1 + (2 − x2) z + z2) (from the bisection). Because the o.g.f. for
S(n, x)2 − S(n− 1, x)2 is (1 + z) times the one for S(n, x)2 the completion of the proof is then obvious.
�

Remark 4 : O.g.f. and coefficient array for the q-polynomials

From lemma 6 the o.g.f. Q(z, x) :=

∞∑

n=0

q(n, x) zn = (1 − z)/(1 − x z + z2) from the known o.g.f.

of the S-polynomials. This shows that the q(n, x) coefficients constitute a Riordan-array (infinite lower

triangular ordinary convolution matrix), which is in standard notation

(
1 − x

1 + x2
,

x

1 + x2

)
, meaning

that the o.g.f. of the column No. m sequence is
1 − x

1 + x2

(
x

1 + x2

)m

. This is the triangle A130777
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where more information can be found. For example, the explicit form for the coefficients is Q(n,m) =

(−1)
n−m+1

2

(n+m
2

m

)
if n ≥ m ≥ 0 and 0 otherwise.

The pairing lemma 3 will also be used in the proof of the following theorem.

Theorem 2A: C(n,x), n ≥ 3, odd, in terms of q-polynomials

With the prime number factorization of n = pe11 · · · peNN with odd primes p1, ..., pN and positive exponents
ej , j = 1, ..., N , one has

C(n, x) =
q
(
n−1
2 , x

) ∏
i1<i2

q
(
n/(pi1 pi2 )−1

2 , x
) ∏

i1<i2<i3<i4
q
(
n/(pi1 pi2 pi3 pi4 )−1

2 , x
)
· · ·

∏
i1
q
(
n/pi1−1

2 , x
) ∏

i1<i2<i3
q
(
n/(pi1 pi2 pi3 )−1

2 , x
)
· · ·

. (50)

Here each index ij of the products runs from 1 to N .
Before we give the proof an examples will illustrates this theorem.

Example 5: n = 32 · 5 = 45

C(45, x) = C(32 · 5, x) =
q(22, x) q(1, x)

q(7, x) q(4, x)
. (51)

This checks.

Proof: This is analogous to the proof of theorem 1A. Again the dpr(2n) representation, from which one
derives Ψ(2n, x), with the prime number factorization for the odd n, is considered. The ∗-multiplication
property allows to consider dpr(2 p1 · · · pN ) with a subsequent multiplication of all arguments in the
numerator and denominator by pe1−1

1 · · · peN−1
N . Because of the paired numerator/denominator structure

due to lemma 3 one finds, either in the numerator or in the denominator quotients of the type
t(2 k, x2 )

t(k, x2 )

which are up to a factor 2
k+1
2 (x + 2) equal to q

(
n− 1

2
, x

)
. Factors of powers of 2 are irrelevant

(they have to cancel) because on both sides of theorem monic polynomials appear. The factors of x− 2
also cancel because the number of q-polynomials in the numerator and denominator have also to match
(see the remark at the end of the proof of lemma 3). This number is 2N−1. The structure of the

numerator of the theorem originates from products with the even indexed t
(
2k,

x

2

)
polynomials in the

numerator after ∗- multiplication. Before this multiplication on has in the numerator t
(
2 p1 · · · pN ,

x

2

)

and t−products over all possibilities to leave out 2, 4, ... of the odd primes from the set {p1, ..., pN}. The
∗-multiplication then leads to t

(
n,
x

2

)
and t−products over all possibilities to divide n by these 2, 4, ...

odd primes. Together with the pairing partners from the denominator this leads to the q-polynomials
given in the numerator of the theorem. A similar argument produces the denominator q-polynomials.
The number of these q−polynomials in the numerator, viz 2N−1 , matches the one for the denominator.
�

Theorem 2B: Factorization of q-polynomials in terms of C-polynomials

q(n, x) =
∏

1<d|(2n+1)

C(d, x) , n ∈ N . (52)

Example 6: n = 17

q(17, x) = C(5, x)C(7, x)C(35, x) . (53)

This checks.

Proof:
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This is again modeled after a similar proof in [30]. Compare this with the proof of theorem 1B.

It is clear that both sides are monic integer polynomials, and the degree fits due to n =
∑

d|(2n+1)

ϕ(d)

2
−

1

2
ϕ(1). See the properties of the Euler totient function mentioned above in the proof of theorem 1B.

The zeros of q(n, x) are x
(n)
l = 2 cos

(
π

2l + 1

2n + 1

)
, for l = 0, 1, ..., n − 1. This follows from definition 1

and lemma 6 with the zeros of S(2n,
√
2 − x ) which are known from those of Chebyshev S-polynomials.

To show that each of these zeros appears on the r.h.s. for C(d, x) with some d|(2n + 1), d 6= 1, i.e., as

2 cos

(
π
2l′ + 1

q

)
for some l′ ∈ {0, 1, ..., d− 3

2
} and gcd(2l′ +1, d) = 1 (see eq. 20), let gcd(2l+1, 2n+

1) = g, with some odd g with 2n+1 = d g. Then 2 l + 1 = (2 l′ + 1) g = (2 l′ + 1)2n+1
d , and for each

l ∈ {0, 1, ..., n− 1} there is one l′ ∈ {0, 1, ... , d−3
2 }. �

Remark 5: Derivation of Theorem 2A from Theorem 2B

Theorem 2B can be used as recurrence for the C-polynomials in terms of the q-polynomials. See the
remark 3. We give the solution in the following corollary.

Corollary 4: q-polynomials in terms of C-polynomials

With the prime number factorization of 2n+ 1 = pe11 · · · peNN , with odd primes, n ∈ N, one has

q(n, x) =

e1∏

q1=0

· · ·
eN∏

qN=0

C(pq11 · · · pqNN )/C(1, x) . (54)

The division by C(1, x) = x + 2 was necessary because not all qj-indices were originally allowed to
vanish.

These rational representations of C(n, x) do not lend itself to extraction of the value C(n, 0) because

undetermined
0

0
quotients appear. In the following we give the absolute term of C for prime indices.

Proposition 8: C(p,0)

For n = p, a prime, one has

C(p, 0) =





0 if p = 2 ,

(−1)
p−1
4 if p≡ 1 (mod 4) ,

(−1)
p+1
4 if p≡ 3 (mod 4) .

(55)

Proof: In eq. (31) with n = p there is no gcd-restriction on the product. Therefore, one can use a
known formula (see appendix B for a proof)

n−1∏

k=1

2 cos

(
π
k

n

)
=





(−1)
n−1
2 if n is odd,

0 if n is even,

(56)

to obtain cy(2,−1) = 0 (which is also clear from the definition: cy(2, x) = x + 1), and for odd primes
cy(p,−1) = (−1)p−1 = +1. Because all k contribute in the product, one can use for even k the formula

cos

(
π
2K

p

)
= − cos

(
π
p − 2K

p

)
which shows that one generates again all odd k contributions, how-

ever each with a minus sign. This leads to cy(p,−1) = (−1)p−1

p−3
2∏

l=0

(
2 cos

(
π
2 l + 1

p

))2

= C(p, 0)2.
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Thus C(p, 0) = ±1. The sign of C(p, 0) is (−1)δ+(p) from eq. (19) for n = p. This number δ+(p) of
positive zeros has been found in proposition 5 to be p−1

4 if p ≡ 1 (mod 4), and p+1
4 if p ≡ 3 (mod 4). For

C(2, 0) = 0, the sign is, of course, irrelevant. �

We close this section with a conjecture on the discriminant of the C−polynomials. The discriminant
of a monic polynomial p of degree n can be written as the square of the determinant of an n × n Van-

dermonde matrix Vn(x
(n)
1 , ..., x

(n)
n ) with elements (Vn)i,j := (x

(n)
i )j , = 1, ..., n and j = 0, ..., n − 1

with the zeros x
(n)
i of p . Here the δ(n) zeros of Cn are given in eq. (20). Another formula for the

discriminant (see e.g., [26], Theorem 5.1, p. 218) is in terms of the derivative C ′(n, x) and the ze-

ros of C: (−1)
δ(n) (δ(n)−1)

2

δ(n)∏

i=1

C ′(n, x
(n)
i ). The result is the sequence Discr(C(n, x)) = A193681(n) =

[1, 1, 1, 8, 5, 12, 49, 2048, 81, 2000, 14641, 2304, 371293, ...] for n ≥ 1. The following conjecture is on the se-

quence q(n) =
nδ(n)

Discr(C(n, x))
which is A215041, [1, 2, 3, 2, 5, 3, 7, 2, 9, 5, 11, 9, 13, 7, 45, 2, 17, 27, 19, 25, ...].

Conjecture: explicit form of the q-sequence

o) q(1) = 1 (clear).

i) If n = 2k for k ∈ N then q(n)
!
= 2.

ii) If n = pk for odd prime p and k ∈ N then q(n)
!
= p(p

k−1+1)/2.

iii) if n = 2k2 p(i1)
ki1 · · · p(iN )kiN with k2 ∈ N0, the ij − th odd primes p(ij), where 2 ≤ i1 < i2 <

... < iN , with N ∈ N if k2 6= 0 and N ≥ 2 if k2 = 0, then

q(n)
!
=

N∏

j=1

p(ij)
2k2−1 p(i1)

ki1
−1

··· p(iN )
kiN

−1
P (N,j) ,with P (N, j) =

N∏

l=1,l 6=j

(p(il)− 1) ,

=
∏

odd p|n

p
δ(n)
p−1 . (57)

The last eq. follows from the degree δ(n) =
ϕ(2n)

2
. This last formula does, however, not work in the

cases i) and ii). One can compare this formula with the proven one for the discriminant of the cyclotomic

polynomials (the minimal polynomials of exp(2π
1

n
) (or any of the primitive n-th root of 1), as given in

[25], eq. (1) p. 297. For this (slightly rewritten) formula see also A004124 and A193679.

Example 7:

ii) p = p(4) = 7, k = 3: q(73) = q(343) = 7(7
2+1)/2 = 1341068619663964900807.

iii) n = 23·32·7, q(n) = 32
2·3·6 72

2·3·2 = 4316018525852839090954658176626149564980915348463203041.

These values have been checked with the help of Maple13 [18].

4 Splitting field Q(ρ(n)) for C(n,x), field extension and Galois group

The algebraic number ρ(n) = 2 cos
(π
n

)
, n ∈ N, with minimal polynomial C(n, x) over Q of degree

δ(n), has been studied in sect. 3. Each of these polynomials, being minimal, is irreducible. All roots
have been given in eq. (19) (or eq. (20)). C(n, x) is also separable because all of its roots are distinct.

Because 2 cos

(
π k

n

)
= t̂(k, ρ(n)) (see eq. (2), and the coefficient array A127672), with the monic

integer t̂-polynomials, each zero can be written as integer linear combination in the vector space basis
< 1, ρ(n), ρ(n)2, ..., ρ(n)δ(n)−1 >, called the power basis. One has to reduce in t̂(k, ρ(n)) all powers ρ(n)p,
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p ≥ δ(n) with the help of the equation C(n, ρ(n)) = 0. See Table 4 for the zeros of C(n, x), n = 1, ..., 30
written in this power basis.

Example 8: n = 8 (octagon)

The δ(8) = 4 zeros of C(8, x) = x4 − 4x2 + 2 are, with ρ ≡ ρ(8) =
√

2 +
√
2, ± ρ and ±(− 3 ρ +

ρ3) = ±
√

2−
√
2. In this case the degree 4 coincides with the number of DSRs in the upper half plane

and the negative real axis.

This shows that the extension of the rational field Q, called Q(ρ(n)), obtained by adjoining just one
algebraic element (called a simple field extension) is the splitting field (Zerfällungskörper in German)
for the polynomial C(n, x). Note that even though the polynomial C(n, x) is from the ring Z[x] one

needs Q(ρ(n)) with rational coefficients rj for the general element α =
∑δ(n)−1

j=0 rj ρ(n)
j . For example,

ρ(8)−1 = 2ρ(8) − 1

2
ρ(8)3. Some references for field extensions and Galois Theory are [6], [12], chpts. V

and VI, [3], and the on-line lecture notes [16]. The dimension of of Q(ρ(n)) as a vector space over Q is
δ(n). This is the degree of the extension, denoted usually by [Q(ρ(n)) : Q], and it coincides with the
degree of the minimal polynomial for ρ(n). Of course, it is a proper extension only if δ(n) ≥ 2, i.e., for
n ≥ 4. This extension of Q is separable, i.e., the minimal polynomial for the general algebraic number
α given above is separable (has only distinct zeros). It is a normal field extension, meaning that every
irreducible rational polynomial with one root in Q(ρ(n)) splits completely over Q(ρ(n)). See, e.g., [6],
Theorem 5.24, p. 108.

We now consider a subgroup of the group of automorphisms of Q(ρ(n)), called Aut(Q(ρ(n)), which
consists of those elements σ which leave the subfield Q pointwise invariant (fixed point field Q):
σ : Q(ρ(n)) → Q(ρ(n)), α 7→ σ(α), with σ(β) = β for all β ∈ Q. The subgroup ofAut(Q(ρ(n)) of these
so-called Q-automorphisms is called the Galois group of Q(ρ(n)) over Q, denoted by Gal(Q(ρ(n))/Q).
Occasionally we abbreviate this with Gn. In order to find the elements σ (we omit the label n) of this
subgroup it is sufficient to know σ(ρ(n)), because of the usual rules for automorphisms: (i) σ(α + β) =
σ(α) + σ(β), (ii) σ(αβ) = σ(α)σ(β), and (iii) α 6= 0 ⇒ σ(α) 6= 0. Indeed, because of σ(1) = σ(12) =
σ(1)σ(1), one has σ(1) = 1, and the images of products of ρ(n) are obtained from products of σ(ρ(n)).
Applying σ on the equation C(n, ρ(n)) = 0 (minimal polynomial), leads to C(n, σ(ρ(n))) = 0, because
the integer (rational) coefficients and 0 are invariant under the Q-automorphism σ we are looking for.
Therefore we have exactly δ(n) distinct Q-automorphisms σj, j = 0, ..., δ(n) − 1, determined from the

distinct roots of C(n, σ(ρ(n))), viz σj(ρ(n)) = ξ̃
(n)
j+1 with the zeros of C(n, x) ordered like in eq. (19) with

increasing k values (see the Table 4). By the same token C(n, σ(ξ̃
(n)
j )) = 0, for j = 1, ..., δ(n) for every

σ. Because all roots are distinct (separable C) this leads to an isomorphism between Gal(Q(ρ(n))/Q)
and a subgroup of the symmetric group Sδ(n). The Q-automorphisms σ can therefore be identified with

permutations of the roots of C (see e.g., [6] ch. 6.3, pp. 132 ff. One identifies the roots ξ̃
(n)
j with j, and

σj with the permutation

(
1 2 ... δ(n)

σj(1)σj(2) ... σj(δ(n))

)
≡ [σj(1)σj(2) ... σj(δ(n))]. This subgroup of Sδ(n) is

Abelian because only products of powers of ρ(n) appear and due to the automorphism property of σ this
carries over to the Galois group.

Example 9: n = 5 (pentagon) Q-automorphisms

α = r0 1 + r1 ρ(5) with ρ(5) = ϕ, the golden section. In this case Q(ϕ) is as quadratic number
field usually called Q(

√
5) with the basis < 1, ϕ > for integers in Q(

√
5) (see e.g., [10], ch. 14.3, p.

207, where τ = (ϕ − 1)). The two (δ(5) = 2) Q-automorphisms are obtained from the solutions

σ(ϕ) = ϕ or − 1

ϕ
= 1 − ϕ of C(5, n) = x2 − x − 1. Hence σ0 = id : σ0(1) = 1, σ0(ϕ) = ϕ and

σ1 : σ1(1) = 1, σ1(ϕ) = 1 − ϕ. Because σ21 = σ0, G5 is generated by σ1, hence the Galois group
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Gal(Q(ϕ)/Q) is the cyclic group Z2 (also known as additive group Z/2Z or C2, but we reserve C for the
minimal polynomials). The fixed field for G5 is Q; for the trivial subgroup with element σ0 it is Q(ϕ).

Example 10: n = 7 (heptagon) Q-automorphisms

The three zeros (δ(7) = 3) of C(7, n) are ξ̃
(7)
1 = ρ(7), ξ̃

(7)
2 = −1 − ρ(7) + ρ(7)2 and ξ̃

(7)
3 = 2 − ρ(7)2

(see Table 4). In the sequel we omit the argument 7. Computing powers of ρ modulo C(7, ρ) = 0 one
finds the Q-automorphisms σ0 = id, σ1(ρ = ξ̃1) = ξ̃2, σ1(ξ̃2) = ξ̃3, σ1(ξ̃3) = ξ̃1 and σ2(ρ = ξ̃1) = ξ̃3,
σ2(ξ̃2) = ξ̃1, σ2(ξ̃3) = ξ̃2. Therefore, the identification with S3 permutations is σ0

.
= [1 2 3] = e,

σ1
.
= [2 3 1] and σ2

.
= [3 1 2]. Each σj permutation can be depicted in a circle diagram with vertices

labeled 1, 2 and 3 and directed edges, also allowing for loops. The only (Abelian) group of order three is
the cyclic Z3 subgroup of S3.

We can also characterize these Galois groups Gn by giving their cycle structure and depict them as cycle
graphs. For cycle graphs see, e.g., [31] “Cycle graph” and “List of small groups” with all cycle graphs for
groups (also non-Abelian ones) of order 1, ... , 16. In order to manage powers of Galois group elements
we first need some fundamental identities of Chebyshev T -polynomials, whence t̂-polynomials.

We will need iterations of t̂ polynomials governed by the following well known identity.

Lemma 7: Iteration of t̂-polynomials

t̂(n, t̂(m,x)) = t̂(nm, x), n,m ∈ N0 . (58)

Proof: See [26], Exercise 1.1.6, p. 5, first with the trigonometric definition of Chebyshev T-polynomials
which then carries over to the general polynomials defined by their recurrence relation. This identity is
then rewritten for t̂-polynomials. �

Lemma 8: mod n reduction of t̂-polynomials in the variable ρ(n)

t̂(k, ρ(n)) = (−1)⌊ k
n⌋ t̂(k(modn), ρ(n)), n ∈ N, k ∈ Z . (59)

(−1)⌊ k
n⌋ =: pn(k), the parity of

⌊
k
n

⌋
, will become important in the following. Sometimes

⌊
k
n

⌋
is called

quotient and denoted also by k\n.
Proof: This follows, with k = l n + r, trivially from the trigonometric identity cos

(π
n
(l n + r)

)
=

cos
(
π l +

π r

n

)
= (−1)l cos

(π
n
r
)
, with r ∈ {0, 1, ..., n−1}. �

To simplify notation we will use also t̂n(x) for t̂(n, x). From lemmata 7 and 8 we have e.g., t̂3(t3(ρ(7)) =

t̂9(ρ(7)) = −t̂2(ρ(7)) = −(ρ(7)2 − 2). This is also +t̂5(ρ(7)) from the identity cos
(π
n
(n ± l)

)
=

− cos
(π
n
l
)
. This proves the following lemma.

Lemma 9: Symmetry relation of t̂ polynomials

t̂(n − l, ρ(n)) = −t̂(l, ρ(n)) , n ∈ N, l ∈ {0, 1, ..., n} . (60)

Lemma 7 which used the trigonometric ρ(n) definition can be rewritten as a congruence for the t̂-
polynomials with indeterminate x. This is because all what is needed is that ρ(n) is a zero of C(n, x).

Corollary 5: Congruence for t̂ polynomials modulo C-polynomials

t̂(k, x) ≡ (−1)⌊ k
n⌋ t̂(k(modn), x) (modC(n, x)) , n ∈ N, k ∈ Z . (61)

An example will illustrate this before we give an another proof of this corollary based on known T -
polynomial identities.

Example 11: Congruence for n = 7, k = 9

t̂(9, x) = x9 − 9x7 + 27x5 − 30x3 + 9x and C(7, x) = x3 − x2 − 2x + 1. Polynomial
division shows that t̂(9, x) = (x6 + x5 − 6x4 − 5x3 + 9x2 + 5x− 2)C(7, x) + (−x2 + 2), hence
t̂(9, x) ≡ −t̂(2, x) (modC(7, x)).
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The alternative proof of corollary 5 is based on the following factorization of Chebyshev S-polynomials

in terms of the minimal polynomials Ψ(n, x) of cos

(
2π

n

)
over Q (for these polynomials see A049310

and A181875/A181876).

Proposition 9: Factorization of S-polynomials in terms of Ψ-polynomials

S(n − 1, x) = 2n−1
∏

2<d | 2n

Ψ
(
d,
x

2

)
, n ∈ N . (62)

As usual, the undefined (empty) product is defined to be 1.

Proof: Start with the eq. (3) of [30], p. 471, written for n → 2n and for the t̂-polynomials instead of

the T -polynomials. This is t̂(n+1, x) − t̂(n− 1, x) = 2n+1
∏

d|2n

Ψ
(
d,
x

2

)
. Then use the identity [20], p.

261, first line, with m → n, n → m and U -polynomials replaced by S−polynomials. This leads to the
identity

t̂(n+m,x) − t̂(n−m,x) = (x2 − 4)S(n − 1, x)S(m − 1, x) , m ≤ n ∈ N . (63)

Here we only need the case m = 1. Then dividing out 2Ψ(1, x2 ) = x − 2 and 2Ψ(2, x2 ) = x + 2 leads
to the claimed identity. �

To end the preparation for an independent proof of corollary 5 we state:

Corollary 6: C-polynomial divides some family of S-polynomials

C(n, x) |S(l n− 1, x) , n ≥ 2, l ∈ N . (64)

This is clear from the definition of C in eq. (16) and the fact that 2 < 2n | 2 l n, for l ≥ 1. E.g.,
C(10, x) = x4 − 5x2 + 5 divides the family {S(9, x), S(19, x), S(29, x), ...}
Proof of corollary 5: From the corollary 6 and the identity eq. (63) with n → l n and m → r one sees
that t̂(k, x) = t̂(l n + r, x) ≡ t̂(l n − r, x) (modC(n, x)). Now t̂(l n − r, x) = t̂((l− 1)n + (n− r), x),
and one can use l1 := l− 1 and r1 := n− r (remember that r ∈ {0, 1, ..., n − 1}, hence r1 has identical
range) as new l and r variables in this congruence, to get t̂(l1 n + r1, x) ≡ t̂(l1 n − r1, x) (modC(n, x)) =
t̂((l − 2)n + r, x) (modC(n, x)). This can be continued until one ends up with
t̂(0n+ k(modn), x) (modC(n, x)). �

Now we are in a position to compute powers of elements of the Galois group Gn. The subset of odd
numbers 2 l + 1 < n entering the product in eq. (20) will be denoted by M(n). There are δ(n) (degree
of C(n, x)) such odd numbers.

Definition 2: The fundamental set M(n)

M(n) :=

{
2 l + 1

∣∣∣∣l ∈
{
0, ....,

⌊
n− 2

2

⌋}
and gcd(2 l + 1, n) = 1

}
= {m1(n), ...,mδ(n)(n)}, (65)

with m1(n) = 1 and we use the order mi(n) < mj(n) if i < j. For n = 1 one takes M(1) = {1}.
Example 12: |M(2)| = δ(2) = 1, M(2) = {1}; |M(14)| = δ(14) = 6 , M(14) = {1, 3, 5, 9, 11, 13}.
For M(n) see the row No. n of the array A216319.

For later purpose we define here, for odd n, the extended fundamental set M̂(n) and its first difference

set △M̂(n)

Definition 3: The fundamental extended set M̂(n) for odd n

For n odd, ≥ 1: M̂(n) := {0,m1(n) = 1, ...,mδ(n)(n) = n− 2, n+ 2} .

Thus |M̂(n)| = δ(n) + 2. Note that gcd(n ± 2, n) = 1 for odd n (proof by assuming the contrary:
gcd(n + 2, n) = d > 2 because n and n + 2 are odd. Then d | (n + 2) and d |n, hence d | ((n + 2) − n),
d | 2, implying d = 2 or d = 1, but d > 2.) The reason for defining this extended set is that for odd n the
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first difference set △M̂(n) = {1,△m2(n), ...,△mδ(n)(n), 4} with △mj(n) := mj(n) − mj−1(n), will
become important later on. △m1(n) = 1 and △mδ(n)+1(n) = 4 for each odd n.

With definition 2 eq. (20) implies,

σj(ρ(n)) = σj(ξ̃
(n)
1 ) = ξ̃

(n)
j+1 = 2 cos

(π
n
mj+1(n)

)
=

t̂(mj+1(n), ρ(n)) for j ∈ {0, 1, ..., δ(n) − 1} . (66)

E.g., n = 7: δ(7) = 3, M(7) = {1, 3, 5}, σ0(ρ(7)) = ρ(7), σ1(ρ(7)) = t̂(3, ρ(7)), and σ2(ρ(7)) =
t̂(5, ρ(7)).

Because t̂ is a rational integer polynomial

σ2j (ρ(n)) = σj(σj(ρ(n))) = t̂(mj+1(n), σj(ρ(n))) = t̂(mj+1(n), t̂(mj+1, ρ(n))) , (67)

and with lemma 6 this becomes σ2j (ρ(n)) = t̂((mj+1(n))
2, ρ(n)). In general we have

σkj (ρ(n)) = t̂((mj+1(n))
k, ρ(n)) , for j ∈ {0, 1, ..., δ(n) − 1} , n, k ∈ N . (68)

Instead of powers of σj(ρ(n)) we can therefore consider powers of mj+1(n). Lemmata 8 and 9 are now
employed to prove that a t̂ polynomial with a product of elements from M(n) as its first argument (or
index) is again a t̂ polynomial with first argument from M(n). In this way one can build sequences of
powers, starting from any element of M(n). Trivially, 1k = 1. Before proving this closure of M(n)
under powers, provided the rules for t̂ polynomials are taken into account, we give two examples, and
then define a new equivalence relation on the integers, called (Moddn), denoted by n∼ .

Example 13: Cycle structure for n = 12 (dodecagon)

δ(12) = 4, M(12) = {1, 5, 7, 11}. 52 = 25 ≡ 1 (mod 12), reflecting lemma 8. The sign pn(25) in eq.
(59) is here +. (If later the sign will be − , the mod n result will be underlined.) The first 2-cycle
is therefore [5, 1]. Similarly, 72 = 49 ≡ 1 (mod 12) (sign +), whence the second 2-cycle is [7, 1], and
finally, 112 = 121 ≡ 1 (mod 12) (sign +), producing the third 2-cycle [11, 1]. This result appears as the
n = 12 entry in Table 6. In this example the Galois group is not generated by one element. hence it is
non-cyclic. In fact, Gal(Q(ρ(12))/Q) = Z2 ×Z2 = Z2

2 (see second entry in Table 7). The corresponding
cycle graph is shown in Figure 4 as the first entry, where the shaded (colored) vertex stands for 1 and
the open vertices should here be labeled with 5, 7 and 11. The cycle structure is 23 (three 2-cycles). In
this example it was not necessary to employ lemma 9 because the signs were always +.

Example 14: Cycle structure for n = 7 (heptagon)

δ(7) = 3, M(7) = {1, 3, 5}. 32 ≡ 2 (mod 7), where now the sign − in eq. (59) is remembered by
the underlining. 2 /∈ M(7), and now lemma 9 is used to rewrite this 2 as 7 − 2 = 5. Therefore,

32 7∼ 5 ∈ M(7) (or 32 ≡ 5 (Modd 7)). The symbol 7∼ (or Modd 7) is used for the congruence in the new
sense, due to lemmata 8 and 9. Then 3 · 5 = 15 ≡ 1 (mod n) (sign +). The first 3-cycle is therefore
[3, 5, 1]. Here 3 generates all the elements of M(7), and Gal(Q(ρ(7))/Q) = Z3, the cyclic group of order
3 = δ(7). The corresponding cycle graph is a circle with three vertices, one of them, labeled 1, is shaded
(colored) and the other two open ones are labeled by 3 and 5.

This brings us to the definition of an equivalence relation n∼ (or Modd n) over the integers Z. Remember
that the floor function for negative arguments is defined as ⌊−x⌋ = −⌊x⌋ if x ∈ N0, and ⌊−x⌋ =
−(⌊x⌋+ 1) if 0 < x /∈ N.

Definition 4: Equivalence relation n∼ on Z

For k, l ∈ Z, n ∈ N: k n∼ l ⇔ an(k) = an(l), with the map an : Z → In := {0, 1, ..., n − 1}, k 7→ an(k),
where

an(k) =





rn(k) if pn(k) = +1 ,

rn(−k) if pn(k) = −1 ,
(69)
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where we used the division algorithm to write k = qn(k)n + rn(k), with the quotient qn(k) ∈ Z and

the residue rn(k) ∈ In. Note that qn(k) =

⌊
k

n

⌋
. The sign pn(k) = (−1)⌊ k

n⌋ = (−1)qn(k) corresponding

to the parity of qn(k), appeared already in lemma 8. an(1) = 0 because −1 ≡ 0 (mod 1).

Instead of k n∼ l we also write k ≡ l (Moddn) (this should not to be confused with modn). Therefore
the sequence an could also be called Modd n. The first of these 2n-periodic sequences an are found in
A000007(n+1), n ≥ 0, (the 0-sequence), A000035, A193680, A193682, A203571, A203572 and A204453,
for n = 1, ..., 7, respectively.
The smallest non-negative residue system mod n, viz 0, 1, ..., n − 1 is used here. For the residue of k
modulo n Maple [18] uses rn(k) = modp(k, n). We also use k(modn) for rn(k). The reader should
verify that n∼ is indeed an equivalence relation satisfying reflexivity, symmetry and transitivity. The
disjoint and exhaustive equivalence classes are given by {[0], [1], .., [n − 1]}, called the smallest non-
negative complete representative classes (or residue classes) Modd n (we omit the index n at the classes:
[m] = n[m], written this way in order to distinguish this class from the ordinary one [m]n used in the
arithmetic modn). These classes are defined by [m] = {l ∈ Z |l n∼m} = {l ∈ Z | an(l) = m}. Because
rn(−k) = 0 if k ≡ 0 (mod n) and rn(−k) = n − rn(k) if k 6≡ 0 (mod n) (later listed as lemma 17) one
can characterize these residue classes also in the following way.

Lemma 10: Complete residue classes Moddn

l ∈ [0] ⇔ l ≡ 0 (modn). Equivalently, [0] = [0]n ,

l ∈ [1] ⇔ l ≡ 1 (mod 2n) or ≡ −1 (mod 2n). Equivalently, [1] = [1]2n ∪ [2n − 1]2n ,

...

l ∈ [n− 1] ⇔ l ≡ n− 1 (mod 2n) or ≡ −(n− 1) (mod 2n).

Equivalently, [n− 1] = [n− 1]2n ∪ [n+ 1]2n . (70)

For example, take n = 7, then [3] = 7[3] = [3]14 ∪ [14− 3]14 = {...,−25,−11, 3, 17, ...}∪
{... − 17,−3, 11, 25, ...} = {...,−25,−17,−11,−3, 3, 11, 17, 25, ...}. If n = 2 one has 2[0] = [0]2 and

2[1] = [1]2. The first differences in the class [0] are, of course, n, and in the class [m], form = 1, 2, ..., n−1,
they alternate between △1 = 2 (n − m) and △2 = 2m, e.g., n = 7,m = 3, △1 = 8, △2 = 6 :
3, 11, 17, 25, 31, .... This difference alternation invalidates certain theorems known for modn. E.g.,
Theorem 53 of reference [10], p. 50, is no longer true: take m = 5, n = 7, a = 3, b = 17. a and b
belong both to the class 5[3] as well as 7[3] but they do obviously not both belong to the class 35[3] . The
following lemma 11 shows that is is sufficient to know the positive values, and append the negative of
these values for each class [m], for m ∈ {0, 1, ..., n − 1}.
Lemma 11: Antisymmetry of the classes [m], for m ∈ {0, ...,n − 1}
For n ∈ N and every m ∈ {0, ..., n − 1} the elements of the equivalence class [m] are antisymmetric
around 0.

Proof: This is obvious for the class [0] = {...−2n,−n, 0, n, 2n, ...}. Form > 0 the negative of every posi-
tive numbers ofm (mod 2n) appears as a negative number of (2n−m) (mod 2n), and vice versa: the nega-
tive of every positive numbers of [2n−m]2n appears as a negative one of [m]2n. This is true because−(m+
l 2n) = (2n−m) − (l+1) 2n, for every l ∈ N, and similarly, −((2n−m) + l 2n) = m − (l+1) 2n, for
every l ∈ N. �

This leads immediately to the following corollary.

Corollary 7: Non-negative elements of the classes [m]

For n ∈ N and every m ∈ {0, ..., n − 1} one has

[m]≥ = [m]2n,≥ ∪ [2n −m]2n,> , and [m] = [m]≥ ∪ −([m]>) . (71)
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Here we used the notations [m]≥ and [ · ]2n,≥ or [ · ]2n,> to denote the subset of non-negative numbers
of [m] and the non-negative or positive numbers of the ordinary residue classes mod 2n, respectively. Of
course 0 appears only in the class [0]. −([m]>) is obtained from the set [m]>(excluding 0 in the case of
class [0]) by taking all elements negative. Note that [−m] is not used here.

With g(n,m) := gcd(m, 2n−m) one has, form ∈ {1, 2, ..., n−1}, [m]2n,> = g(n,m) [m/g(n,m)]2 n/g(n,m),>

and [2n − m]2n,> = g(n,m) [(2n − m)/g(n,m)]2 n/g(n,m),>. This is. of course, only of interest if
g(n,m) 6= 1. E.g., n = 6, m = 3, g(n,m) = 3: [3]12,> = 3 ∗ [1]4,> and [9]12,> = 3 ∗ [3]4,>, where
again k ∗ [p]q,> is the set with all members of the set [p]q,> multiplied with k. This is obvious.

The trivial formula for the members of the residue classes [m]≥, considered as sequences of increasing
numbers called {c(n,m; k)}∞k=1, is

c(n,m; k) =





(k − 1)n if m = 0 ,

⌊
k
2

⌋
2n + (−1)km if m ∈ {1, 2, ..., n − 1} .

(72)

The nonnegative members of the complete residue classes (Moddn) for n = 3, 4, 5, 6, and 7 are found in
A088520, A203575, A090298, A092260, and A113807. Sometimes 0 has to be added, in order to obtain
the class [0]. Of course, these complete residue classes can be recorded as a permutation sequence of the
non-negative integers.

We now list several lemmata (the trivial lemma 17 has already been used) in order to prepare for the
proof of the multiplicative structure of these equivalence classes.

Lemma 12: Parity of Moddn residue classes

For even n the parity of the members of the residue class n[m], m ∈ {0, 1, ..., n − 1} coincides with the
one of m. If n is odd this is also true for the classes with m ∈ {1, 2, ... , n− 1}, and for m = 0 the parity
of the elements alternates, starting with + (for even).

Proof: The case of the residue class [0] is clear for even or odd n because of its members 0modn (see
lemma 10). Similarly, for the other m values, because then mod 2n applies.

Lemma 13: Periodicity of the parity sequence pn with period length 2n

pn(k) = pn(k + 2n l) for l ∈ Z, i.e., pn(k) = pn(r2n(k)) = pn(k (mod 2n)), for k ∈ Z, n ∈ N. (73)

Proof: This is obvious from the definition of pn(k) given in lemma 8, eq. (59), with definition 4, eq. (69).
For the second part use k = 2n q2n(k)+ r2n(k).

Lemma 14: (A)symmetry of sequence pn around k = 0

for n ∈ N, k ∈ N0 : pn(−k) =





+pn(k) if k ≡ 0 (modn)

−pn(k) , if k 6≡ 0 (modn) .
(74)

Proof: This follows immediately from the property of the ⌊−x⌋ function mentioned above before defini-
tion 4. �

Lemma 15: Product formula for the residue rn

For n ∈ N and k, l ∈ Z one has: rn(k l) = rn(k) rn(l) (modn).

Proof: Just multiply k = qn(k)n+ rn(k) with l = qn(l)n+ rn(l).

Lemma 16: Residue r2n from rn

For n ∈ N and k ∈ Z one has: r2n(k) =





rn(k) iff r2n(k) ∈ {0, 1, ..., n− 1},

rn(k) + n iff r2n(k) ∈ {n, n+ 1, ..., 2n − 1}.
Proof: Obvious for r2n(k) ∈ {0, ..., n−1} as well as ∈ {n, ..., 2n−1}. �
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Lemma 17: Residue for negative numbers

For n ∈ N and k ∈ N0 one has: rn(−k) =





0 if k ≡ 0 (modn) ,

n − rn(k) if k 6≡ 0 (modn) .

Proof: Obvious. �

Lemma 18: Symmetry of the an (or Moddn) sequence around k = 0

For n ∈ N and k ∈ N0 one has: an(−k) = an(k).

Proof: This is proved for the two cases k ≡ 0 (modn) and k 6≡ 0 (modn) separately. In the first case
rn(k) = 0, as well as rn(−k) = 0 , hence an(k ≡ 0 (modn)) = 0, which is symmetric around k = 0. In
the other case, we employ lemma 13, noting that r2n(k) 6= 0, n (otherwise k ≡ 0 (modn)). The two cases
r2n(k) ∈ {1, 2, ..., n− 1} and r2n(k) ∈ {n+1, n+2, ..., 2n− 1} have pn(k) = pn(r2n(k)) equal +1 or
−1, respectively. Then with the second alternative of lemma 14 one finds an(−k) = rn(−k) if pn(−k) =
−pn(k) = +1 and an(−k) = rn(k) if pn(−k) = −pn(k) = −1 which coincides with the definition of
an(+k). �

Now we turn to the arithmetic structure of the Modd n residue classes. It is clear from the following
counter-example that addition cannot be done class-wise. Consider n = 6, k = 2 and l = 7. Then
a6(2 + 7) = 3 but a6(a6(2) + a6(7)) = a6(2 + 5) = a6(7) = 5. In other words, 2 6∼ 2 and 7 6∼ 5, but

2 + 7 = 9 6∼ 3 but (2 + 5) = 7 6∼ 5, and 3 is not equivalent to 5 (Modd 6). Similarly, from (a − 1) n∼ 0
does in general not follow a n∼ 1, because for n > 2 in the latter case a can also be of the form −1 + k 2n
if it belongs to a class [m] with positive m, whereas in the first case it has to be of the form 1 + k′ n,
which can only match for n = 1 and 2. However, it turns out that multiplication can be done class-wise.
This is the content of the following proposition.

Proposition 10: Modd n residue classes are multiplicative

For n ∈ N and k, l ∈ Z one has:

an(k l) = an(an(k) an(l)) i.e., k l n∼ an(k) an(l) , i.e., kl ≡ an(k) an(l) (Modd n) . (75)

Before giving the proof, consider the example n = 6, k = 2 and l = 7. Now a6(2 · 7) = 2 and

a6(a6(2) · a6(7)) = a6(2 · 5) = a6(10) = 2. Or stated equivalently, 2 · 7 = 14 6∼ 2 6∼ 2 · 5 6∼ a6(2) a6(7).

Proof:

i) Due to the symmetry of an (see lemma 18) it is clear that it is sufficient to consider only non-negative
k and l.

ii) Consider first the cases k ≡ 0 (modn) or l ≡ 0 (modn). If m ≡ 0 (modn) then an(m) = 0. This
follows for both alternatives in eq. (69). Therefore, if k ≡ 0 (modn), an(k l) = 0 because k l ≡ 0 (modn)
for every l, and an(0 · an(l)) = an(0) = 0, proving the assertion. In the other case, l ≡ 0 (modn), the
proof is done analogously.

iii) Now rn(k) and rn(l) are non-vanishing, and k and l are positive. Four cases are distinguished
according to the signs of (pn(k), pn(l)), viz (+,+), (−,−), (+,−) and (−,+).

(+,+): In this case, due to the 2n-periodicity of pn (see lemma 13), r2n(k) and r2n(l) are both from
{1, 2, ..., n − 1}, hence

(+,+) : r2n(k) = rn(k) and r2n(l) = rn(l) . (76)

Also, from eq. (69), one obtains in this case an(k) an(l) = rn(k) rn(l). There is an alternative for
an(rn(k) rn(l)), depending on pn(rn(k) rn(l)) being +1 or −1. Both cases are possible as the following
examples for n = 6 show: p6(3 · 4) = p6(12 (mod 12)) = p6(0) = +1 and p6(3 · 7) = p6(21 (mod 12)) =
p6(9) = −1. First the argument of pn is rewritten with the help of eq. (76). pn(rn(k) rn(l)) =
pn(r2n(k) r2n(l)). Due to the (2n)-periodicity (lemma 13) this is pn(r2n(k) r2n(l)mod(2n)) = pn(r2n(k l)) =
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p(k l), due to lemma 15 with n → 2n, and again the (2n)-periodicity. In the first alternative, the +1 case,
an(an(k) an(l)) = rn(k) rn(l) (modn) = rn(k l), again from lemma 15. This is just a(k l) if pn(k l) =
+1, proving the assertion for this alternative. In the other case, pn(k l) = −1, an(rn(k) rn(l)) =
−(rn(k) rn(l))(modn) which is rewritten with modn-arithmetic and lemma 15 as −rn(k l)(modn) =
−(k l)(modn) = rn(−k l). This coincides with a(k l) for this alternative, proving the assertion.

(-,-): Now we have from lemma 16

(−,−) : r2n(k) = n + rn(k) and r2n(l) = n + rn(l) . (77)

Here pn((rn(−k) rn(−l)) is rewritten with lemma 17, eq. (77), the 2n periodicity, and lemma 15,
as follows. pn((n − rn(k)) (n − rn(l))) = pn((2n − r2n(k)) (2n − r2n(l))) = pn(r2n(k) r2n(l)) =
pn(r2n(r2n(k) r2n(l))) = pn(r2n(k) r2n(l) (mod 2n)). With lemma 15 (with n → 2n this becomes
pn(r2n(k l)) = pn(k l), again from the (2n)-periodicity. In the first alternative pn(k l) = +1 and
an(rn(−k) rn(−l)) = rn(rn(−k) rn(−l)). With lemma 17 andmodn-arithmetic this is rn((−rn(k)) (−rn(l))) =
rn(rn(k) rn(l)), and with lemma 15 this becomes rn(k l), coinciding with an(k l) for this alternative. For
the other alternative, pn(k l) = −1, an(rn(−k) rn(−l)) = −(rn(−k) rn(−l))(modn). This becomes, with
lemma 17, modn-arithmetic and lemma 15
−(rn(k) rn(l)) (modn) = −rn(k l)(modn). This vanishes if rn(k l) = 0 which means k l ≡ 0 (modn)
(which is possible, e.g., n = 6, k = 2, l = 3), and then this coincides with the claim which is for this
alternative a(k l) = rn(−(k l)) = 0. If rn(k l) 6= 0 then −rn(k l) (modn) = n − rn(k l) which also
coincides with the claim a(k l) = n − rn(k l) if k l 6≡ 0 (modn).

We skip the proofs of the other two cases, (+,−) and (−,+), which run along the same line. Here one
arrives first at pn(−(k l)), and in order to compare it with p(k l) both alternatives in lemma 17 have to be
considered like in the just considered second alternative. �

For the computation of the cycle structure of the Galois group Gn = Gal(Q(ρ(n))/Q) we are only
interested, due to eq. (20), in odd numbers relatively prime to n. Contrary to ordinary modn-arithmetic
where the set of odd numbers O := {2l + 1 | l ∈ Z} is in general not closed under multiplication
(e.g., 5 · 5 = 25 ≡ 4 (mod 7)), it will be shown that O is closed under Moddn multiplication. Of
interest are the units, the elements which have inverses, in order to see the expected group structure.
First consider the reduced set O∗

n, given by the odd numbers relatively prime to n. The negative odd
numbers in this set are just the negative of the positive odd numbers, therefore it will suffice to consider
O∗

n,> := {2l + 1 | l ∈ N0, gcd(2l + 1, n) = 1}. If n is a power of 2 the set O∗
2 will be O, with the o.g.f.

G(x) =
x

(1− x)2
(1 + x) for the sequence of positive odd numbers {o∗2,>(k) := 2 k + 1}∞k=0. For the

other even numbers n only the odd numbers relatively prime to the squarefree kernel of n, called sqfk(n),
(see A007947, encountered already several times), will enter the discussion. Therefore, besides the just
considered (trivial) case of the even prime 2, the set O∗

n is only relevant for squarefree odd moduli, either
prime or composite. We consider first the case of odd primes n = p, and give the o.g.f. of the sequences
of numbers from O∗

p,>, called o∗p,>(k), as well as an explicit formula in terms of floor functions. These
are the positive odd integers without odd multiples of the odd p.

Proposition 11: Odd prime moduli, o.g.f. and explicit formula for O∗
p,> elements

With Gp(x) :=

∞∑

k=0

o∗p,>(k)x
k, for odd primes p, one has

Gp(x) =
x

(1− xp−1) (1− x)



1 + 2

p−3
2∑

k=1

xk (1 + x
p−1
2 ) + 4

p−1
2 + xp−1



 , (78)
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and

o∗p,>(k) =





0 if k = 0 ,

2 k − 1 + 2

⌊
k+ p−3

2
p−1

⌋
if k ∈ N .

(79)

We have used the even number 0 for k = 0 such that the Gp(x) sum can start with k = 0.

Proof: This proposition will become a corollary to the later treated general case of odd squarefree moduli
n in proposition 13.

Example 15: O.g.f.s and formula for reduced odd numbers for modulus p = 7.

G7(x) =
x

(1− x6) (1− x)

{
1 + 2 (x + x2) + 4x3 + 2 (x4 + x5) + x6

}
, (80)

o∗7,>(n) = 2n − 1 + 2

⌊
n+ 2

6

⌋
, n ≥ 1 . (81)

The instances for p = 3, 5, 7, 11, 13 and 17 are found under A007310, A045572, A162699, A204454,
A204457, and A204458, respectively.

In order to prepare for the general case of odd squarefree modulus n, we state a proposition on the
structure of the reduced odd numbers set O∗

n,>.

Proposition 12: Mirror symmetry and modular periodicity of O∗
n,> for odd n

i) Mirror symmetry. For k ∈ {1, 2, ..., δ(n)} one has:

o∗n,>(2 δ(n) − (k − 1)) = 2n − o∗n,>(k), (82)

where o∗n,>(k) = mk(n) from M(n), given in definition 2, eq. (65).

ii) mod 2n periodicity: For k ∈ N one has:

o∗n,>(k) = o∗n,>(k + 2 δ(n)) (mod 2n). (83)

Written as a relation between neighboring fundamental units, numbered by N ≥ 1, this becomes the
following statement. For k ∈ {2 (N − 1) δ(n) + 1, ..., 2N δ(n)}, with N ∈ {2, 3, 4, ...}, one has:

o∗n,>(k) = (N − 1) 2n + o∗n,>(k − (N − 1) 2 δ(n)) . (84)

δ(n) is the degree of the minimal polynomial C(n, x) for the algebraic number ρ(n) introduced in section 2.

Note that if n =

ω(n)∏

j=1

pj with distinct odd primes p, and ω(n) =A001221(n), then 2 δ(n) =

ω(n)∏

j=1

(pj −1).

L(n) := 2 δ(n) is the length of the fundamental N -units.

Before we give the proof consider figure 3 for the case n = 3 · 5 = 15 with δ(n) = 4. The second
statement ii) concerns the relation of the numbers of the second fundamental unit (N = 2) to the one
in the N = 1 unit. E.g., the odd number 37 for k = 2 · 4+ 2 = 10 is equal to 30 + o∗15,>(10 − 2 · 4) =
30 + o∗15,>(2) = 30 + 7, which checks. The statement i) shows the mirror symmetry within the first
(and any other) unit of length L(15) = 2 · 4 = 8. In figure 3 this symmetry is indicated by the brackets
below the first unit, and it is a symmetry around the missing number n = 15. Missing numbers have
been indicated by a dot. It is the pattern of missing odd numbers which is mirror symmetric, not the
one of the actual values of the odd numbers. But the relation between the odd numbers in the second
half of a unit and the first one then follows, and is given by the statement of the proposition. In figure
3 P (n) := 2n = 30 is the shift for the o∗>,n values from the N = 1 to the N = 2 unit (or any of the
neighboring units), and p(n) := n + 1 = 16 is the shift for these values from the first half of every unit
to the second half.
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o*  (k)>,n

2 δ (n) δ (n)4

+p(n)=n+1=16
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Figure 3: Structure of the sequence of mod n reduced odd numbers, n=15  

Proof: i) It is clear from the degree of the minimal polynomial and eq. (20) that the number of modn
reduced positive odd numbers smaller than 2n is δ(2n) = 2 δ(n) (from the definition of δ(n) in terms of
Euler’s ϕ function). We now determine δ(n) reduced odd numbers modn which lie between n and 2n,
by mirroring the δ(n) elements of M(n) around the position where the missing number n is situated,
which is between the position k = δ(n) and the next one. The mirror symmetry refers to the gaps. The
number mk(n) from M(n) will be mapped to o∗n,>(2 δ(n)− (k−1)) at the mirrored position in the second
half of the later defined first fundamental unit (N = 1). To find this odd number the first difference

set △M̂(n), introduced in connection with M̂(n) from the definition 3, becomes important in order to
count the gaps in the sequence of odd numbers when they are reduced modn. o∗n,>(2 δ(n) − (k − 1)) is
found by adding to mk(n) twice the value of the sum of the gaps from the position k to the center, the
mirror axis. This is 2 (△mk+1(n) + △mk+2(n) + ... + △mδ(n)(n) + 2). The 2 in this sum is half the
gap-length from the value n− 2 at the position δ(n) and n+ 2 at the next position, the mirror-position
δ(n) + 1 of δ(n). This is a telescopic sum which becomes 2 (−mk(n) + mδ(n)(n) + 2). Therefore, the
value of o∗n,>(2 δ(n) − (k − 1)) is mk + 2 (−mk(n) + mδ(n)(n) + 2) = 4 + 2mδ(n)(n) − mk(n) =
2n − mk(n), because always mδ(n)(n) = n− 2 holds. See figure 3, n = 15 with the values 30 − 1 = 29,
30 − 7 = 23, 30 − 11 = 19 and 30 − 13 = 17 for k = 1, 2, 3 and 4, respectively. Now it is
clear that this mirroring leads to the correct number of reduced odd numbers for the second half of the
fundamental N = 1 unit, because gcd(mk(n), n) = 1, as member of M(n), implies for the mirror image
also gcd(o∗n,>(2 δ(n)− (k−1)), n) = 1. All positive odd numbers relatively prime to n and not exceeding
2n − m1(n) = 2n − 1 have thus be found.

Proof of ii): From above we know that the number at position k = 2 δ(n) + 1 is 2n + 1 because the
one for k = 2 δ(n) has been shown to be 2n− 1 and gcd(2n + 1, n) = 1 (indirect proof by assuming the

contrary, using odd n; this is similar to the proof given in connection with definition 3 of M̂(n)). Now it
is clear that a shift in the o∗n,> numbers with P (n) := 2n leads from the fundamental unit No. N = 1
to the second one, N = 1, by putting o∗n,>(2 δ(n) + k) = o∗n,>(k) + P (n), for k ∈ {1, 2, ..., δ(n)}.
This is obvious because the gcd value 1 is not changed by adding 2n. This process can be iterated
to find the mod 2n periodicity structure stated in ii). See figure 3, n = 15 with k = 14, N = 2:
o∗15,>(14) = 49 = 2 · 15 + o∗15,>(14 − 1 · 2 · 4) = 30 + o∗15,>(6) = 30 + 19. �

The sequences {o∗n,>} for n = 15 and n = 21 are found in A007775 and A206547, respectively.

The sequences of the M odd n residues of the numbers o∗n,>(k), for k = 1, 2, ..., for prime moduli
n = p = 3, 5, 7, 11, 13, 17, and for the first odd composed ones for n = 15, 21 are found in A000012,
A084101, A110551, A206543, A206544, A206545, and A206546, A206548, respectively.
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For the following formula for the nonnegative odd numbers reduced modn involving floor functions we
need the following list (increasingly ordered set) F(n) of length L(n) = 2 δ(n) derived from the list △M̂.

Definition 5: List F(n)

F(n) = {f(n, 1), ..., f(n, 2 δ(n)} with

f(n, j) =
△mj+1(n) − 2

2
, for j ∈ {1, 2, ..., δ(n) − 1}

f(n, δ(n)) = 1, f(n, δ(n) + j) = f(n, δ(n) − j), for j ∈ {1, 2, ..., δ(n) − 1}, and

f(n, 2 δ(n)) = 0. (85)

Here △mk(n) := mk(n) − mk−1(n), (the kth element of △M̂(n)). This list F(n) is obtained from first

enlarging △M̂ by mirroring the first δ(n) entries at the last element 4, to obtain a list of order 2 δ(n)+1.
Then the first and last element of this new list is put to zero and all the other elements are diminished
by 2, thus obtaining a set of only even numbers. Then one divides by 2, omits the final 0, and reverses
the remaining list.

Example 16: F(15)

n = 15 = 3 · 5, 2 δ(15) = 2 · 4 = 8, M(15) = {1, 7, 11, 13}, M̂(15) = {0, 1, 7, 11, 13, 17}, △M̂(15) =
{1, 6, 4, 2, 4}, the mirror extension is {1, 6, 4, 2, 4, 2, 4, 6, 1}, the reduction step leads to {0, 4, 2, 0, 2, 0, 2, 4, 0},
and finally, dividing by 2, omitting the last 0 and reverting, leads to F(15) = {2, 1, 0, 1, 0, 1, 2, 0}. Except
for the last 0 there is a mirror-symmetry around the fourth entry 1. See the first row of table 5.

For the odd squarefree composite numbers n =A024556(m), m = 1, 2, ... , 17, see table 5 for M̂(n),

△M̂(n) and F(n).

Proposition 13: O.g.f. and formula for O∗
n,> elements.

With Gn(x) :=
∞∑

k=1

o∗n,>(k)x
k, for odd n, one has

Gn(x) =
x

(1− x2 δ(n)) (1− x)



1 +

2 δ(n)−1∑

k=1

△o∗n,>(k + 1)xk + x2 δ(n)



 (86)

with the first differences △o∗n,>(j) := o∗n,>(j) − o∗n,>(j − 1) .

This generates

o∗n,>(k) = 2 k − 1 + 2

2 δ(n)∑

j=1

f(n, j)

⌊
k + (j − 1)

2 δ(n)

⌋
. (87)

Note that the numerator polynomial in Gn(x) needs the first differences of the sequence members of the
fundamental N = 1 unit, which due to the mirror symmetry of proposition 12 can be reduced to the
first differences of {m2(n), m3(n), .., mδ(n), n+ 2} with mδ(n) = n − 2.

One could use, like in proposition 11, on,>(0) = 0 and let the sum in Gn(x) start with k = 0.

Proof: We start with the periodicity of the sequence due to proposition 12 ii). Taking the difference
o∗n,>(k) − o∗n,>(k − 1) = o∗n,>(k − 2 δ(n)) − o∗n,>(k − 1 − 2 δ(n)) leads to the recurrence (we omit
all unnecessary indices) o(k) = o(k − 1) + o(k − 2 δ(n)) − o(k − 1 − 2 δ(n)), for k ≥ 2 δ(n) + 1.
Here one needs also o∗n,>(0) := −1. For some of these recurrences the o.g.f.s were determined by

R. J. Mathar in e.g., A045572 and A162699. I general Gn(x) =

2 δ(n)∑

k=1

o(k)xk + x
∞∑

k=2 δ(n)+1

o(k −

1)xk−1 + x2 δ(n)
∞∑

k=2 δ(n)+1

o(n − 2 δ(n)) − x2 δ(n)+1
∞∑

k=2 δ(n)+1

o(n − 2 δ(n) − 1)xn−2 δ(n)−1, where the
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recurrence has been used (and the infinite sum has been reordered, not bothering about absolute con-

vergence, in the sense of formal power series). Shifting the indices, one arrives at Gn(x) =

2 δ(n)∑

k=1

o(k)xk +

x
{
Gn(x) − (o(1)x + .... + o(2 δ(n) − 1)x2 δ(n)−1)

}
+ x2 δ(n)Gn(x)− x2 δ(n)+1 (Gn(x) + (−1)), where

the −1 resulted from putting o(0) = −1 (see above). This rearranges into (1 − x − x2 δ(n) +
x2 δ(n)+1)G n(x) = x

(
1 + △o(2)x + ... + △o(2 δ(n))x2 δ(n)−1 + x2 δ(n)

)
. Factorizing the bracket on

the l.h.s. and division leads to the claimed form for Gn(x). Of course, the denominator factor (1−x2 δ(n))
can be factorized into cyclotomic polynomials.

For the proof of the second part we use L := 2 δ(n). Given Gn(x) with the L + 1 input coefficients of the
numerator polynomial one derives the claimed explicit form for o∗n,>(k), by defining first the sequence with

entries bL(k) :=

⌊
k + L− 1

L

⌋
, generated by

x

(1− xL) (1− x)
(partial sums of the characteristic sequence

for multiples of L, then shifted). The numerator polynomial leads for o∗n,>(k) to a sum of L + 1 floor-

functions with decreasing arguments, starting with

⌊
k − 0 + L− 1

L

⌋
, ending with

⌊
k − L+ L− 1

L

⌋
=

⌊
k − 1

L

⌋
, and corresponding coefficients. In order to find a standard form for this sum we use the following

floor-identity
L−1∑

j=0

⌊
k + j

L

⌋
= k, for L ∈ N, and k ∈ Z , (88)

which can be seen from
L−1∑

j=0

(k + j) (modL) =
L (L− 1)

2
, k ∈ Z, which is trivial (just add the L terms

which are 0, 1, ... , L− 1 in a certain cyclic order), and the relation between modL and the floor function⌊
k

L

⌋
=

1

L
(k − k (modL)). This identity allows us to lower L consecutive coefficients of this sum of

L + 1 terms by 1, producing a term k if one uses the identity for the first L terms because the second to
last floor-argument is then

⌊
k+0
L

⌋
, and the identity is read backwards. If one uses the identity for the last

L terms one produces a k− 1, because the last term has
⌊
k−1
L

⌋
. When we apply this identity twice in the

described way we pick up n + (n− 1) = 2n − 1 and the first and last coefficient, which were originally
1, become 0, and all other coefficients are diminished by 2 because they participate in both applications
of the identity. It is guaranteed that all coefficients are now even and ≥ 0, because the coefficients
except the first and last one were even and ≥ 2, because these numerator polynomial coefficients resulted
from first differences of the sequence of odd numbers. Therefore one can extract a factor 2 and if the

floor-functions are written with increasing arguments, starting with

⌊
k

L

⌋
(the second to last term in the

original order), one has exactly the coefficients given by the list F(n) of length L of definition 5. This
proves the explicit form for o∗n,>(k). �

Example 17: O.g.f. G8(x)

G8(x) = x
(1 + 2 (x + x2 + x3 + x4 + x5 + x6 + x7) + x8

(1− x8) (1− x)
= x

1 + x

(1 − x)2
(89)

generating, with offset 0, the odd numbers A004273.

Before coming to the multiplicative group Modd n we define reduced residue systems Modd n as well as
reduced odd residue systems Modd n. See e.g., [2], p. 113 for the modn case.
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Definition 6a: Reduced residue system Modd n

A reduced residue system Moddn (RRSn) is any set of ϕ(n) pairwise incongruent Moddn numbers, each
of which is relatively prime to n.

E.g., n = 15, ϕ(15) = 8, {1, 2, 4, 7, 8, 11, 13, 14} or {29, 32, 26, 23, 22, 41, 17, 16}, etc. The first one is the
smallest positive one. These systems will not play a rôle later on.

Definition 6b: Reduced odd residue system Modd n

A reduced odd residue system Modd n (RoddRSn) is any set of δ(n) odd pairwise incongruent Modd n
numbers, each of which is relatively prime to n

E.g., n = 15, δ(15) = 4, {1, 7, 11, 13} or {29, 27, 19, 17}. The first one coincides with M(15) from
eq. (65) and is the smallest positive reduced residue system Modd n. Remember that the parity of the
members in each Modd n residue class, not in class [0], is the same (see lemma 12). Later on we will
restrict ourselves mostly to the system M(n).

We next study the multiplicative group Modd n. The elements are the residue classes [mj ] , for j =
1, 2, ..., δ(n), corresponding to the members of the reduced residue system M(n). In fact, we will take
these representatives, multiplying Modd n, as we have done above.

In order to see the group structure one first convinces oneself that this set M(n) is closed under Modd n
multiplication. This follows from proposition 10 and lemma 12 which showed that these classes have
only odd numbers, and every odd numbers appear exactly once because of the definition of these classes.
The associativity, commutativity and the identity element 1 are also clear. We do not have a formula
how to find the inverse element m−1

j of mj but coming to this Modd n multiplication from the study of
automorphisms of the splitting field for the minimal polynomial C(n, x) for the algebraic number ρ(n),
it is clear that these inverses have to exist (the invariance property defines a group). We are dealing here
with the Galois groups for these polynomials. The cycle structure for n = 1, 2, ..., 40 is given in table
6. Because each group is Abelian one has for every group of prime order a cyclic group, which can be
checked for the examples given in table 6.

Remark 6: The multiplicative group Modd n is cyclic if δ(n) is prime.

This is a corollary on the fundamental theorem on finite Abelian groups (see e.g., [28], p. 49, see also
[6], p. 511, Cauchy’s Theorem A.1.5), or use Lagrange’s theorem on the order of subgroups, and the fact
that the powers of an element, not the identity, generate a cyclic subgroup, to prove that in fact every
group of prime order is cyclic. The values n for which the order δ(n) is prime are given in A215046.
This is the sequence [4, 5, 6, 7, 9, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, ...]. Of course, there are
other values n with cyclic Modd n group, like n = 2, 3, 8, 10, .... For n = 1 one has the trivial case with
cycle structure [[0]], also a cyclic group, viz Z1. One can give a more general sequence of n numbers
with cyclic Gn

∼= multiplicative Moddn group, namely A210845.

Remark 7: The multiplicative group Moddn is cyclic if δ(n) is squarefree.

The squarefree numbers are given in A005117, namely [1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 14, 18, 21, 22, 23, 25, 29,
31, ...]. This remark 7 results from the fact that A000688, giving the number of Abelian groups of order
n, is 1 exactly for the squarefree numbers A005117. See the formula, based on the H.-E. Richert reference
quoted there. Because for each order there is at least the cyclic group these values lead necessarily to a
cyclic group. The above given A215046 values are a proper subset of those from A210845. There are.
however, still more values n with a cyclic Modd n group. Missing are e.g., 8, 10, 15, 16, 17, .... All the n
values with cyclic Modd n group are in A206551. The complementary sequence is A206552, giving the n
values with non-cyclic Modd n group. See Table 8 for all values n ≤ 100.

As an aside we remark that special squarefree numbers are the so called cyclic numbers A003277. It is
known that if the order of a (finite) group is a cyclic number then there is only one group, the cyclic one.
See a comment on A003277. Therefore A000001(n), the number of groups of order n is 1 if n is a cyclic
number, in fact, the reverse also holds: if A000001(n) = 1 then n is a cyclic number. This can be taken
as an alternative definition for cyclic numbers because then there is only one (non-isomorphic) group of
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this order which has to be the cyclic group. See also Yimin Ge’s Math Blog [YiminGe], where the ‘only
if’ statement in the proposition may be misleading but in the proof the given statement is correct. E.g.,
for order 6 (not a cyclic number) there are groups other than Z6. In fact A000001(6) = 2, and there
is the (non-Abelian) group D(3) (dihedral group). (It is clear that cyclic numbers are not the numbers
n for which the multiplicative group modn, which is Abelian of order ϕ(n), is cyclic. These numbers
are given in A033948). Because we are dealing with Abelian groups the squarefree numbers are more
interesting here.

Recall the situation for the Galois group for the cyclotomic polynomials (the minimal polynomials for
ζ(n), an n-th root of unity) which is isomorphic to the multiplicative (Abelian) group modulo n. See Table
7 were we have listed these non-cyclic groups for n ∈ {1, ... , 100}. This n−value sequence is known as
A033949. (The case n = 15 is an exercise in [7], p. 159, Ex. 9.6. 3)a)). The values n with a cyclic Galois

group coincide with the moduli n which possess primitive roots r = r(n), i.e., the order of r modulo n
is ϕ: rϕ(n) ≡ 1 (modn), and no smaller positive exponent k satisfies this congruence. These moduli n
are known to be exactly pe, 2 pe

′

, 1 and 2, with some positive powers e and e′. See e.g., [23], Theorem
2.41, p. 104. All other n lead to non-cyclic multiplicative groups modulo n . See A033949. For the
smallest primitive roots in this case see [1], pp. 864-869, the column called g. We do not know a similar
characterization of the non-cyclic numbers n for the Modd n group which are shown in Table 8. However,
these numbers have also to appear in A033949. It is clear that we should determine primitive roots
r ≡ r(n) for the Modd n multiplication, i.e., find those r from M(n) which have order δ(n): the smallest
positive k which satisfies rk ≡ +1 (Modd n) is k = δ(n). See A206550 for these smallest positive primitive
roots Modd n, where a 0 entry, except for n = 1, indicates that there exists no such primitive root. This
sequence starts, with offset 1, as [0, 1, 1, 3, 3, 5, 3, 3, 5, 3, 3, 0, 7, 5, 7, 3, 3, 5, 3, 0, 11, 3, 3, 0, 3, 7, ...]. In general
one does not expect a formula for these primitive roots r = r(n), because also in the multiplication
modulo n case there is no one available.

Proposition 14: Number of Modd n primitive roots

If a primitive root r for the multiplicative group Modd n exists there are ϕ(δ(n)) of them.

This is the sequence A216322. For example, n = 13, δ(13) = 6, ϕ(6) = 2 with r1 = 7 and r2 = 11;
n = 14, δ(14) = 6, ϕ(6) = 2 with r1 = 5 and r2 = 11.

Proof: If a Moddn primitive root exists then the multiplicative group Modd n is cyclic. The order of this
group is δ(n), Then the number of pairwise incongruent primitive roots is obtained exactly like in the
case of primitive m-roots of unity on the unit circle by the number of relatively prime numbers less than
m which is Euler’s ϕ(m). Here m = δ(n). �

Now the question whether the multiplicative group Modd p with p a prime is cyclic is answered. Up to

now we know from remark 7 the positive answer only for those primes with δ(p) =
p− 1

2
squarefree.

These are the primes given in A066651. The case p = 2 with δ(2) = 1 is trivially cyclic. For general
prime p one wants to show that there exists a primitive root in the multiplicative Modd p group. This is
analog to the modp case, where a proof can be found in [23], Theorem 2.36, p. 99, or in [2], ch. 10.4,
pp 206 ff. One has, however, to be careful to use only the multiplicative group structure in the proof.
Already in connection with lemma 10 we have given a warning to use theorems valid in the modular
arithmetic modn in our case. Another failure occurs for the theorem [23], Theorem 2.3(c), p. 49, e.g.,

x ≡ y (modm1), x ≡ y (modm2) if and only if x = y

(
mod

m1m2

gcd(m1,m2)

)
. For the M odd n case

one has the counterexample 19 = 5 (Modd 3) and 19 = 5 (Modd 7)) but 19 is obviously not congruent
5 (Modd 21). Several lemmata, the analoga of mod n facts, are collected before stating proposition 15.

Lemma 19: Analogon of the Fermat-Euler Theorem

If a is odd and gcd(a, n) = 1 then aδ(n) ≡ +1 (Moddn), with delta(n) =A055034(n) (see the start of
section 3).
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Proof: Analog to e.g., [2], Theorem 5.17, p. 113, with m → n, ϕ → δ, the order of the set (reduced
odd residue system) M(n) of eq. (65), and modulo → Modd n (we avoid the term Moddulo). Instead
of M(n) one can use any other reduced odd residue system Modd n (see definition 6b), with mj(n), j ∈
{1, 2, ... , δ(n)}, replaced by any member of the residue class [mj(n)]. The cancellation used at the end of
the proof in [2] can be done here by multiplying with the existing inverses of the bis there. We are dealing
with the multiplicative group Moddn.

Next follows the definition of the order of an element from a reduced odd residue system Moddn.

Definition 7: Modd n order of a from a RoddRSn

The Moddn order of a positive (odd) integer a from a reduced odd residue system Modd n is the smallest
positive integer h such that ah ≡ 1 (Modd n).

E.g., n = 10, a = 9, h = 2 because 91 = 9 (Modd 10), and 92 = 1 (Modd 10). See the table A216320
corresponding to the Modd n orders h of the smallest positive RoddRSn members A216319.

Lemma 19 guarantees the existence of a Modd n order h ≤ δ(n) for each positive odd number a with
gcd(a, n) = 1.

Example 18: n = 12, δ(12) = 4, M(12) = {1, 5, 7, 11}, 14 ≡ 1 (Modd 12), 52 ≡ 1 (Modd 12) ⇒ 54 ≡
(Modd 12), similarly for 7 and 11. See the cycle structure for n = 12 in table 6.

Lemma 20: The Modd n order divides δ(n)

If h is the Moddn order of a then h|δ(n). Moreover, aj ≡ ak (Modd n), w.l.o.g. j > k, if and only if
h|(j − k).

Proof: The first part is analog to [23], Corollary 2.32, p. 98, with ϕ → δ. It uses lemma 19, the
Fermat-Euler analogon. Remember that always gcd(a, n) = 1 from the order definition. The second
part, for which one can use the group property, follows from the analog of [23], Lemma 2.31, p. 98. (In
the older German version of this book, vol. I, the analog of this lemma 20 appears as Satz 22.3 on p. 63.)
�

Lemma 21: On the Modd p order of a, p a prime

If h is the Modd p order of a, with p a prime, one has (ak)h ≡ 1 (Modd p) for all k, and 1 =
a0, a1, a2, ... , ah−1 are pairwise incongruent Modd p.

Proof: First part: (ak)h = (ah)k, ah ≡ 1 (Modd p) and Modd p respects multiplication (see proposition
10). Second part: assume the contrary, i.e., ai ≡ aj (Modd p), 1 ≤ j < i ≤ h− 1. Apply lemma 20 for
n = p, showing that h|(i−j), but i−j ≤ i ≤ h−1 leading to a contradiction. �

Lemma 22: Xh ≡ 1 (Moddp) has at most h incongruent solutions

The congruence Xh ≡ 1 (Modd p), h a positive integer, has at most h pairwise incongruent solutions
Modd p.

Proof: If

⌊
Xh

p

⌋
is even then Xh ≡ 1 (modp). and due to the modp theorem, e.g., [21], Theorem

42, p. 80, there are at most h incongruent solutions. If

⌊
Xh

p

⌋
is odd then −Xh ≡ 1 (modp), i.e.,

Xh ≡ (p−1) (modp) which again has at most h incongruent solutions. �

This is a weak statement, but sufficient for the following. One could try to prove that the number of

Modd n incongruent solutions of the congruence Xh ≡ 1 (Modd p) is gcd(h,
p− 1

2
) if p is odd. This

number is trivially 1 for p = 2.

Lemma 23: On the Modd n order of ak

If h is the Modd n order of a, then
h

gcd(h, k)
is the Modd n order of ak.

Proof: This is the analogon of [23] lemma 2.33, p. 98, using the present lemma 20, part 2. �

Now we are ready for the following proposition.
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Proposition 15: Existence of Modd p primitive roots

For every prime p there exists a primitive root for the multiplicative group Modd p.

Proof: One shows that there are precisely ϕ(δ(p)) primitive roots and because this number is always
≥ 1 the claim will then follow.
Following the proof of [23], Theorem 2.36, p. 99, we infer from the present lemma 19 (with n → p) that

every positive odd integer a with gcd(a, p) = 1 has a Modd p order h ≡ hp(a), 1 ≤ h ≤ δ(p) =
p− 1

2
,

and from lemma 20 h|δ(p). Moreover, (ah)k ≡ 1(Modd p) for all k, and 1, a1, a2 ... ah−1 are h pairwise
incongruent odd numbers Modd p. From lemma 22 these are all the solutions of the congruence Xh ≡ 1
(Modd p). Lemma 23 shows that there are ϕ(h) numbers ak, with k ∈ {1, ... h − 1} which have Modd p
order h ≡ hp(a) because ϕ(h) is the number of such k with gcd(k, h) = 1. The case h = 1 is covered
with ϕ(1) := 1.

With [2], p. 207, we define for each h|δ(p) the set Ap(h) :=

{
a

∣∣∣∣∣ a ∈ M(p) and Modd p order of a is h

}
.

There are τ(δ(p)) (τ =A000005, the number of divisors) such disjoint sets. This is the sequence
[1, 1, 2, 2, 2, 4, 4, 3, 2, 4, 4, 6, ...] =A216326. E.g., p = 7, M(7) = {1, 3, 5}, τ(3) = 2 (see also
row No. n =p =7 of the Modd n order table A21630). Call ψp(h) := |Ap(h)|, the number of elements
of this set. We have seen that ψp(h) is 0 or ϕ(h) because for each h|δ(p) the set Ap(h) is either empty
(no a ∈ M(p) has Modd p order h) or this set has ϕ(h) elements. Thus ψp(h) ≤ ϕ(h). It is clear that∑

h|δ(h)

ψp(h) = δ(p) because each a ∈ M(p) belongs to one of these sets Ap(h). Now a standard result is

∑

h|δ(h)

ϕ(h) = δ(p) (see e.g., [2], Theorem 2.2, p. 26, wit hn → δ(p)), therefore,
∑

h|δ(h)

(ϕ(h)− ψp(h)) = 0,

but because ϕ(h) − ψp(h) ≥ 0 it follows that ψp(h) = ϕ(h) > 1, not 0, for each h|δ(p). This holds
especially for h = δ(p). Hence the number of primitive Modd p roots is ψp(δ(p)) = ϕ(δ(p)) > 1, and the
proof is complete. �

For the sequence δ(p(n))n ≥ 1, see A130290. For the smallest positive primitive Modd n roots see the
sequence A206550. Here for prime n.

Corollary 8: Cyclic Modd p group

The multiplicative (Abelian) Modd p group, for p a prime, is the cyclic group Zδ(p).

We now concentrate on those groups Moddn which are cyclic and notice that whenever δ(n) is even there
exists a unique smallest positive odd number > 1 which solves the congruence x2 ≡ 1 (Moddn). This is
the nontrivial solution of this congruence. The trivial one is x = 1 (standing for the class of solutions
1 (Moddn) which also includes −1). We prove this first for even n.

Proposition 16: Nontrivial square-root of 1 (Modd 2k), k ≥ 2

If n = 2 k, for k ∈ {2, 3, 4, ...}, and if the Galois group Gal(Q(ρ(n))/Q) is cyclic, a unique smallest
positive solution r > 1 of the congruence x2 ≡ 1 (Modd 2 k) exists, and it is r = n− 1.

Proof: For even n = 2 k, k ≥ 2, the cyclic group is then Zδ(2 k) and δ(2 k) is even because with the

standard prime factorization δ(2e pe11 · · · peNN ) = 2e−1
∏

j=1..N

p
ej−1
j (pj − 1), and if N = 0 then e ≥ 2, and

if N ≥ 1 then e ≥ 1. In both cases δ is even, because in the second case there is at least one j and
pj − 1 is even. Even order δ(2 k) of the cyclic group means that powers of the generator c of the δ-cycle,
the smallest positive primitive root (of 1) (Modd 2 k), come in pairs which are mutually inverse, except

for 1 = cδ(2 k) and s := c
δ(2 k)

2 . This s > 1 is unique and solves of the congruence x2 ≡ 1 (Modd 2 k).

Because

⌊
(n− 1)2

n

⌋
= n − 2 + 0 is, with even n, even, and in order to compute (n − 1)2 (Modd n)
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one has to determine (n − 1)2 (modn) , which is 1. Therefore, the unique s for even n is s = n − 1.
�

Example 19: Nontrivial square-root of 1 (Modd8)

s(8) = 7: 72 = 49 ≡ 1 (Modd 8), because

⌊
49

8

⌋
= 6, hence p8(49) = +1, and 49 ≡ +1 (mod 8),

therefore 49 ≡ +1 (Modd 8).

Similarly, for n = p, p an odd prime, the cycle length is δ(p) =
p− 1

2
. In the event that

p− 1

2
is even,

i.e., if p is of the form 4 k + 1, i.e., p ≡ 1 (mod 4), (see A002144) a smallest positive nontrivial solution
of the quadratic congruence x2 ≡ 1 (Modd n) exists. We will numerate the primes congruent 1 (mod 4)
by defining p̂(n) :=A002144(n), n ≥ 1. E.g., for n = p̂(2) = 13 one has, besides the trivial solution
x = 1 (Modd 13) (this residue class includes −1), x ≡ 5 (Modd 13) as a solution. This means that in the
group table the row for the element 5 has a 1 in the diagonal, like in the row for the identity element 1.
These elements are self-inverse like the identity element 1. Note that in the ordinary reduced modn case
there is always a 1 in the diagonal for row p− 1, besides the 1 in the row for the identity element, but in
that case p− 1 ≡ −1 (modn), and hence is a trivial solution. See A206549 for these non-trivial solutions
in our case. The other inverses in these cyclic groups can be read off the cycle structure. One pairs the
first entry, the generator c of the cycle, with the second to last (the one before the 1, the second with
the third to last, etc. E.g., for n = 13 one has the inverses 7−1 ≡ 11 (Modd 13), 11−1 ≡ 7 (Modd 13),
and 3−1 ≡ 9 (Modd 13) , 9−1 ≡ 3 (Modd 13), and the left over 5 is self-inverse, as mentioned above. This
pairing of inverses is clear from the cyclic structure.

The next objective is to find some method to compute this uniquely existing smallest positive non-
trivial solution s(p) of the congruence x2 ≡ 1 (Modd p) for given prime p = p̂(n) =A002144(n) for

the k(n) := p̂(n)− 1
4 values given in A005098. This k-sequence starts with [1, 3, 4, 7, 9, 10, 13, 15, 18, ...].

The following l-algorithm will determine all these non-trivial solutions s(p̂(n)) of the congruence x2 ≡
1 (M odd p̂(n)). We start with the Ansatz s(p) =

√
(o+ 1) p − 1, with some odd number o. This

means that we are looking for primes of the form
s2 + 1

o+ 1
, and we are interested only in primes of the

form 4 k + 1, i.e., p̂(n). Because s(p̂)2 = (o + 1) p̂ − 1, s(p̂) is odd, say 2K + 1. This implies

2K (K + 1) + 1 =
o+ 1

2
p̂, which shows that o+1

2 has to be odd, i.e., o = 4 l̂ + 1. Now we compute

the even number 2 k =
p− 1

2
=

(2K + 1)2 − (4 l̂ + 1) p̂

2
= 4T (K) − 2 l̂ − 2 k (4 l̂ + 1), where

we have introduced the triangular numbers T (K) := K (K+1)
2 , given in A000217. This implies that

2 k (2 l̂ + 1) = 2T (K) − l̂ . Therefore, l̂ is even, say 2 l, and we have, with inputs k, l and K:
p = 4 k + 1, s2(p̂) = (o + 1) p − 1, o = 8 l + 1 and s(p̂) = 2K(p̂) + 1 . Because now
2T (K) = 2 k + 2l (4 k + 1) = 2 l + 2k (4 l + 1), we find the ‘nice equation’

4T (K) + 1 = (4 k + 1) (4 l + 1) . (90)

For given prime p̂ of the form 4 k + 1, i.e. for k = p− 1
4 (see A005098), we determine the minimal l ∈ N0,

such that k (1 + 4 l) + l produces a triangular number, namely T (K) . The index of this triangular

number is then K =

√
8T (K)+ 1− 1

2 . We have uses Maple [18] to compute these minimal l values. It
will be seen from the later proposition 15 that there is always such a minimal l, and not all non-negative
values appear. Precisely the entries of A094178 and 0 occur as minimal l values. We will from now on
denote this minimal l also by l (hoping to cause no confusion). If l = 0 then k is a triangular number,
and conversely. The non-vanishing l values are characterized by having as elements of the squarefree
kernel set of 4 l + 1 only distinct primes congruent 1 (mod 4). E.g., l = 2 will not appear because the
squarefree kernel of 9 consists of the prime 3 which is not congruent 1 (mod 4). In order to proof that
only numbers from A094178 can appear as positive l values, we use the ‘nice equation’ and observe that
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4T (K) + 1 = K2 + (K + 1)2, i.e., it is the sum to two neighboring squares with gcd(K,K + 1) = 1
(shown by indirect proof, see the remark following definition 3 ). Now a theorem ensures that all prime
factors of 4T (K) + 1 are congruent 1 (mod 4). See the theorem 3.20 on p. 164 of the reference [23].
From the ‘nice equation’ we have either 4 l + 1 = 1, i.e., l = 0, or, if l is non-vanishing, then the
squarefree kernel set of 4 l + 1 has only primes congruent 1 (mod 4). Therefore l can be 0 or it is from
A094178, i.e., from [0, 1, 3, 4, 6, 7, 9, 10, 13, 15, 16, 18, 21, 22, 24, 25, 27, 28, ...]. The l = 0 value appears
for the primes [5, 13, 41, 61, 113, 181, 313, 421, ...], which is the sequence A027862. In this case k = p̂−1

4
is a triangular number. l = 1 for the primes [17, 29, 53, 73, 109, 137, 281, 397, 449, 593, 757, ...] This is the
sequence A207337(n), n ≥ 2. These are the primes p̂ such that 5 p̂ = 4T (K) + 1 for some K = K(p̂).
E.g., 5 17 = 85 = 421 = 1, thusK(17) = 6. These are also the primes of the form (m2+1)/10. Just use

m = m(K) = 2 K + 1. In general, k =
T (K) − l

4 l + 1
, (see eq. (90) and K =

√
2 (4 l + 1) p̂ + 1 − 1

2
.

E.g., p̂ = 53 belongs to l = 1 and K = 11, and T (K) = 66. This checks with the ‘nice equation’. We
do not give here the tables of the sequences l(n) = l(p̂(n)) and K(n) = K(l(n)) (this incorrect renaming
of arguments should not lead to confusion) for given p̂(n) because after the next proposition 17 we will
find another way to obtain the K(n) numbers directly, hence the corresponding l(n) numbers, and from
these the desired s(p̂(n)) solutions from s(p̂(n)) = 2K(n) + 1.

Proposition 17: Congruence 4T(X) + 1 = X2 + (X+ 1)2 ≡ 0 (modp)

There are precisely two incongruent solutions of the congruence f(X) := 2X2 + 2X + 1 ≡ 0 (modp),
provided p = p̂(n) =A002144(n), n ≥ 1. The smallest positive representative will be called K(n), and
the next larger incongruent one is then K2(n) := p̂(n) − 1 − K(n).

Proof: Because of the degree 2 of f this congruence has at most two incongruent solutions. We shall
see that in fact there are two. This congruence is reduced to a problem of quadratic residues, following
a standard prescription (see, e.g., [21], pp. 132-3). The discriminant of f is D = 22 − 4 2 1 = −4.
Multiplying f by 8 yields (4X + 2)2 + 4 ≡ 0 (mod 8 p). With Y = 4X + 2 this is Y 2 = D (modn),
with a composite modulus n = 23 p. This is a quadratic residue problem, but gcd(D,n) is not 1, but 4.
Theorem 77 of [21] is applied with d = 4, e = 2, f = 1, a+1 = −1 and n1 = 2 p Thus the problem is
reduced to the quadratic residue problem Z2 ≡ −1 (mod 2 p). This is solved by studying the congruences
for the powers of primes, here just 2 and p, separately (see e.g., [21], sect. 26, pp. 83-5). The congruence
modulo 2 has only the solution +1 (because −1 ≡ +1 (mod 2)), and modulo p one can consult the

Legendre symbol

(−1

p

)
which is (−1)

p−1
2 (see e.g., [23], Theorem 3.2 (1), p. 132). Therefore −1 is a

quadratic residue modulo p if and only if this symbol is +1, demanding that p ≡ 1 (mod 4), i.e., p = p̂
from A002144. Call the smallest positive solution x0, then p̂ − x0 is also an incongruent solution modulo
p̂, and two is the maximal number of solutions because of the degree 2 of this congruence. This implies
that there are 1 · 2 = 2 incongruent solutions of this congruence modulo 2 p (see e.g., [21], Theorem 46,
p. 84). Returning to the original problem this proves that there are also two incongruent solutions. If the
smallest positive solution for p̂(n) =A207337(n) is called K(n), then the next larger incongruent solution
of 4T (X) + 1 = X2 + (X + 1)2) ≡ 0 (mod p̂(n)) is K2(n) := p̂(n) − 1 − K(n), which is obvious.
�

The pair of sequences of all positive solutions modulo 5, 13, and 17 are given in A047219, A212160 and
A212161, respectively, where in each case the even indexed members are the positive solutions congruent
to K(n) and the odd indexed ones are the positive solutions congruent to K2(n), i.e., a(2 k) = k p̂(n) +
K(n) and a(2 k + 1) = k p̂(n) + K2(n), k ≥ 0. For the three given examples n = 1, 2, 3 respectively.
The companions (K(n),K2(n)) have been computed with Maple [18] and they can be found as A212353
and A212354. The first entries are for K: [1, 2, 6, 8, 15, 4, 11, 5, 13, 27, 37, 45, 16, 7, 18, 52, 64, ...] and for
K2: [3, 10, 10, 20, 21, 36, 41, 55, 59, 61, 59, 55, 92, 105, 118, 96, 92, 126, ...] corresponding to the primes p̂:
[5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, ...]. Note that proposition 17 yields
directly the searched for nontrivial solution of s(p̂(n))2 ≡ +1 (Modd p̂(n)) via s(p̂(n)) = 2K(n) + 1.
Compare this with the s values given in A206549 with first entries [3, 5, 13, 17, 31, 9, 23, 11, 27, 55, 75, 91, 33, 15, 37, 105
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Because ŝ(n) := s(p̂(n)) = 2K(n)+ 1 ≤ p̂(n)− 2 , i.e., K(n) ≤ p̂ − 3

2
iff ŝ2(n) := K2(n) + 1 ≥ p̂(n)

and ŝ(n) ≤ ŝ2(n), n ≥ 1. Thus only ŝ(n) ∈ M(p̂), the restricted odd residue class Modd p̂, and the
solution ŝ2(n) is discarded.

This proposition and the ‘nice equation’ eq. (90) show that the l−algorithm from above will indeed pro-

duce a solution l, related to the existing K(n) for given p̂(n), via l(n) =

(
4T (K(n)) + 1

p̂(n)
− 1

)
/4. The

smallest positive non-trivial solution s(p̂(n)) of the congruence x2 ≡ +1 (Modd p̂(n)) is then 2K(n) + 1.

See K(n) =A212353(n), n ≥ 1. E.g., n = 5, p̂(5) = 37, K(5) = 15, l =

⌊
4 120, + 1

37

⌋
− 1)/4 = 3,

ŝ(n) = 31, with

⌊
312

37

⌋
= 25 = o and 312 = 961 = −1 (mod 37) = 36.

As a application involving s(p̂(n)) we derive the analog of Wilson’s theorem
∏ R(p) = (p − 1)! ≡

(p− 1) (modp) ≡ −1 (modp), for each prime p (see e.g., [2], Theorem 5.24, p. 116, or [10], Theorem 80,
p. 68), where R(n)is the set of the representatives of the smallest positive reduced residue system modn
for n ≥ 2 which is of order ϕ(n). In the Modd p case we have to replace the set R(n) by the set M(n) of
eq. (65) with order δ(n).

Proposition 18: Analog of Wilson’s theorem for Modd p

∏
M(p) = (p− 2)!! ≡





1 if p−1
2 is odd

ŝ(n) if p−1
2 is even, p = p̂(n), n ∈ N

(Modd p) , (91)

where ŝ(n) = s(p̂(n)), p̂(n) =A002144(n), stands for the above treated nontrivial root Modd n, i.e., the
solution of the congruence x2 ≡ 1 (Moddn) which is not 1, if it exists. Note that −1 ≡ +1 (Moddn),
n ≥ 2 (see lemma 10). For the double factorials (p − 2)!! see A207332.

Proof: The multiplicative group group Modd p, p a prime, is the cyclic group Zδ(p) from proposition
14. The order δ(p) of this group is even if and only if p = p̂, i.e., a prime 1 (mod 4). In this case we
know from above that the non-trivial ŝ(n) = s(p̂(n)) exists, and an algorithm for finding it has been
given. Besides the unit element 1 and this ŝ(n) all other factors in

∏ M(p̂) can be paired such that
their product is 1 (Modd p̂) (see the discussion after proposition 16), leaving only s(p̂). In the other case,
when p ≡ 3 (modp), the group order is odd. Then all numbers besides 1 can be paired in the product to
produce 1 (Modd p), and the result is therefore 1. �

For the cyclic Galois groups belonging to C(n, x) the list of the smallest positive primitive roots r(n)
(i.e., the smallest element from M(n) which generate these cyclic groups) are found under A206550. As
mentioned above, we do not have a formula for those n > 3 values whose cycle does not start with 3 as
smallest positive primitive root, like for n = [6, 9, 13, 14, 15, 18, 21, 26, 27, 33, 37, 38, 39, ...].

Open problems:

• Proof of the conjecture on the q−sequence related to the discriminant of the minimal C(n, x) polyno-
mials; or find a counterexample.

• Characterization of the values n for which the Galois group Gn is non-cyclic.

• Characterization of the values n for which the cycle of the cyclic multiplicative group Modd n ∼= Gn is
generated by 3.

• More theorems on multiplicative Modd n arithmetic.
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Appendix A

The proof of eq. (30), with ϕ(n)
n replaced by the product-formula given there a bit later, is a (nice)

application of PIE (the principle of inclusion and exclusion. See e.g., [5], Theorem 4.2, pp. 134 ff).
As mentioned above, this formula uses only the distinct prime factors of n, the elements of the set
sqfkset(n), the set of primes of the squarefree kernel of n. The product formula for ϕ(n)

n can be read
as the generating function for the elementary symmetric functions (here polynomials) in the variables
1
pj
, j = 1, 2, ...,M(n). M(n), also called ω(n), is given in [27] as A001221(n).

ϕ(n)

n
=

M(n)∏

j=1

(
1 − 1

pj

)
=

M(n)∑

r=0

(−1)r σr

(
1

p1
, ...,

1

pM(n)

)
, (92)

with σ0 = 1, and symbolically σr =
∑

r

1

p. · · · p.
, where the sum extends over the

(
M

r

)
terms with r

factors 1
p.

with increasing indices. E.g., M = 3 with σ2 = 1
p1 p2

+ 1
p1 p3

+ 1
p2 p3

.

To calculate
n−1∑

k=1
gcd(k,n)=1

k one starts, at the zeroth step (r = 0), with the unrestricted sum which is n
2 (n−1),

and subtracts, in the next step (r = 1), the sum of all multiples of each prime dividing n which are

≤ (n − 1). For the pj-multiples this sum is pj

n
pj

− 1
∑

k=1

k =
n

2

(
n

pj
− 1

)
, for j = 1, 2, ...,M(n). This

leads, in step r = 1 to the subtraction of
n

2

∑

j

(
n

pj
− 1

)
. Now in this subtraction all multiples of the

product of two different pjs appeared twice, therefore one has, in the next step (r = 2), to add them

once. This is done by +1
∑

i < j

pi pj

n
pi pj

− 1
∑

k=1

k =
n

2

∑

i< j

(
n

p. p.
− 1

)
. In step r = 3 one concentrates

on products of three different primes pi1 pi2 pi3 with i1 < i2 < i3. Now such a 3−product appeared
once in step r = 0 ( in the unrestricted sum), −3 times in step r = 1, originating from the multiples
(pi1 pi2) · pi3 , (pi1 pi3) · pi2 and (pi2 pi3) · pi1 , and +3 times in step r = 2, from the multiples pi1 · ( pi2 pi3),
pi2 · ( pi1 pi3), and pi3 · ( pi1 pi2). Therefore, up to this stage, each such 3−product appeared once too
much, and it is subtracted in this step r = 3 when all these 3−products terms are summed. Now the
pattern starts to become clear. Up to, and including, step r = 3 one has for each 4−product the counting
1 − 4 + 6 − 4 = −1. Hence in step r = 4 one adds once the sum over all multiples of each such
4−product. In general, in step r this counting will produce (−1)r+1 (from the alternating row r = 4 in
the Pascal triangle A007318), and one will therefore add (−1)r times the sum over all multiples of each
such r−product. This yields

n−1∑

k=1
gcd(k,n)=1

k =
n

2

[
(n− 1)−

∑

i1

(
n

pi1
− 1

)
+

∑

i1<i2

(
n

pi1 pi2
− 1

)
...−+

... (−1)M(n)
∑

i1<...<iM(n)

(
n

p1 p2 · · · pM(n)
− 1

)
 . (93)

Now the ±1 terms all cancel if one takes into account the number of terms of each r− sum, which is
(M
r

)
.

This is due to the vanishing alternating sum over Pascal triangle’s row M . Thus the result becomes the
alternating sum over the elementary symmetric polynomials with the reciprocal distinct prime factors of
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n as variables.
n−1∑

k=1
gcd(k,n)=1

k =
n2

2

M(n)∑

r=0

(−1)r σr

(
1

p1
, ...,

1

pM(n)

)
. (94)

As mentioned above this is written as the generating function of these polynomials and the final result
is with the second part of eq. (92)

n−1∑

k=1
gcd(k,n)=1

k =
n2

2

M(n)∏

j=0

(
1 − 1

pj

)
. (95)

This shows that s(n) :=
2

n2

n−1∑

k=1
gcd(k,n)=1

k is indeed
ϕ(n)

n
, which appears in [27] as A076512(n)/A109395(n).

s(n) is identical for all n with the same distinct prime factors, independent of their multiplicity, i.e., it
depends only on the elements of sqfset(n). From the multiplicativity of ϕ one sees that this scaled sum
s(n) is also multiplicative. E.g., s(12) = s(6) = s(2) s(3).

Appendix B

For the proof of eq. (56) we follow [24], p.33, and consider the rewritten version

n−1∏

k=1

(
1 − e2π i k

n

)
=





1 if n is odd ,

0 if n is even .
(96)

In order to see that this is identical to eq. (56), just extract eπ i k
n , leading to the (2 cos) factors under

the product, and in front summing in the exponent leads to the factor e
1
2
π i (n−1) = in−1 = (−1)

n−1
2 .

The l.h.s. of eq. (96) is then computed using (for the last step see e.g., [9], Exercise 50, p. 149)

1 + z + z2 + ... + zn−1 =
zn − 1

z − 1
=

n−1∏

k=1

(z − e2 π i k
n ) , (97)

where one specializes to z = −1. (By putting z = +1 one finds the result

n−1∏

k=1

2 sin

(
π
k

n

)
= n , n ≥ 2,

with 1 for n = 1.)
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Table 1: Reduced DSR-algebras (over Q), n = 3, ..., 12.

n ρ ≡ ρ(n) reduced DSR-algebra δ(n) DSR− basis

3 1 ρ2 = 1 1 < 1 >

4
√
2 ρ2 = 2 2 < 1, ρ >

5 ϕ =
1

2
(1 +

√
5) ρ2 = ρ + 1 2 < 1, ρ >

6
√
3 ρ2 = 3, [σ = ρ2 − 1 = 2] 2 < 1, ρ >

7 2 cos
(
π
7

)
ρ2 = 1 + σ, σ2 = 1 + ρ + σ, ρ σ = ρ + σ 3 < 1, ρ, σ >

8
√

2 +
√
2 ρ2 = 1 + σ, σ2 = 2σ + 1, τ2 = 2 (1 + σ), 4 < 1, ρ, σ, τ >

ρσ = ρ + τ, ρ τ = 2σ, σ τ = 2 ρ + τ ,

(σ = 1 +
√
2, τ =

√
2 ρ)

9 2 cos
(
π
9

)
ρ2 = 1 + σ, σ2 = 2 + ρ + σ, ρ σ = 2 ρ + 1, 3 < 1, ρ, σ >
(σ = ρ2 − 1), [τ = ρ (σ − 1) = 1 + ρ]

10 ϕ
√
3 − ϕ ρ2 = 1 + σ, σ2 = −1 + 3σ, τ2 = −1 + 4σ, 4 < 1, ρ, σ, τ >

ρσ = ρ + τ, ρ τ = 3σ − 2, σ τ = ρ + 2 τ ,
(σ = ρ2 − 1 = 1 + ϕ, τ = ρ (σ − 1),

= (1 + ϕ)
√
3 − ϕ)

[ω = 2 (−1 + σ) = 2ϕ]

11 2 cos
(
π
11

)
ρ2 = 1 + σ, σ2 = 1 + σ + ω, 5 < 1, ρ, σ, τ, ω >
τ2 = 1 + σ + τ + ω, ω2 = 1 + ρ + σ + τ + ω,
ρ σ = ρ + τ, ρ τ = σ + ω, ρω = τ + ω,
σ τ = ρ + τ + ω, σ ω = σ + τ + ω,
τ ω = ρ + σ + τ + ω,
(σ = ρ2 − 1, τ = ρ (σ − 1), ω = σ (σ − 1) − 1)

12
√

2 +
√
3 ρ2 = 1 + σ, σ2 = 2 (1 + τ), τ2 = 3 (1 + σ), 4 < 1, ρ, σ, τ >

ρσ = ρ + τ, ρ τ = 1 + 2σ, σ τ = 3 ρ + τ ,
[ω = 1 + σ, χ = 2 ρ],

(σ = ρ2 − 1 = 1 +
√
3, τ =

√
2

2
(3 +

√
3 ))

...

ρ(n) := 2 cos
(π
n

)
, R

(n)
k = S(k − 1, ρ(n)), k = 1, ...,

⌊n
2

⌋
,

R1 = 1, R2 ≡ ρ, R3 ≡ σ, R4 ≡ τ, R5 ≡ ω, R6 ≡ χ (dependence on n suppressed).

In round brackets the values for the basis elements are given in terms of ρ. In square brackets the linear
dependent DSRs are given. Boxed n-numbers indicate linear dependent DSRs.
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Table 2: Minimal polynomials of 2 cos
(π
n

)
for n = 1,2, ...,30.

n C(n,x)

1 x+ 2

2 x

3 x− 1

4 x2 − 2

5 x2 − x− 1

6 x2 − 3

7 x3 − x2 − 2x+ 1

8 x4 − 4x2 + 2

9 x3 − 3x− 1

10 x4 − 5x2 + 5

11 x5 − x4 − 4x3 + 3x2 + 3x− 1

12 x4 − 4x2 + 1

13 x6 − x5 − 5x4 + 4x3 + 6x2 − 3x− 1

14 x6 − 7x4 + 14x2 − 7

15 x4 + x3 − 4x2 − 4x+ 1

16 x8 − 8x6 + 20x4 − 16x2 + 2

17 x8 − x7 − 7x6 + 6x5 + 15x4 − 10x3 − 10x2 + 4x+ 1

18 x6 − 6x4 + 9x2 − 3

19 x9 − x8 − 8x7 + 7x6 + 21x5 − 15x4 − 20x3 + 10x2 + 5x− 1

20 x8 − 8x6 + 19x4 − 12x2 + 1

21 x6 + x5 − 6x4 − 6x3 + 8x2 + 8x+ 1

22 x10 − 11x8 + 44x6 − 77x4 + 55x2 − 11

23 x11 − x10 − 10x9 + 9x8 + 36x7 − 28x6 − 56x5 + 35x4+
35x3 − 15x2 − 6x+ 1,

24 x8 − 8x6 + 20x4 − 16x2 + 1

25 x10 − 10x8 + 35x6 − x5 − 50x4 + 5x3 + 25x2 − 5x− 1

26 x12 − 13x10 + 65x8 − 156x6 + 182x4 − 91x2 + 13

27 x9 − 9x7 + 27x5 − 30x3 + 9x− 1

28 x12 − 12x10 + 53x8 − 104x6 + 86x4 − 24x2 + 1

29 x14 − x13 − 13x12 + 12x11 + 66x10 − 55x9 − 165x8+
120x7 + 210x6 − 126x5 − 126x4 + 56x3 + 28x2 − 7x− 1

30 x8 − 7x6 + 14x4 − 8x2 + 1
...
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Table 3: A187360(n,m) coefficient array of

minimal polynomials of 2 cos
(π
n

)
, rising powers

n/m 0 1 2 3 4 5 6 ...

1 2 1

2 0 1

3 -1 1

4 -2 0 1

5 -1 -1 1

6 -3 0 1

7 1 -2 -1 1

8 2 0 -4 0 1

9 -1 -3 0 1

10 5 0 -5 0 1

11 -1 3 3 -4 -1 1

12 1 0 -4 0 1

13 -1 -3 6 4 -5 -1 1

14 -7 0 14 0 -7 0 1

15 1 -4 -4 1 1
...
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Table 4: Zeros of C(n,x) in power basis (rising powers of ρ(n)) for n = 1, 2, ..., 30.

n coefficients of C-zeros in power basis < ρ0, ...,ρδ(n)−1 >

1 [[−2]]

2 [[0]]

3 [[1]]

4 [[0, 1], [0,−1]]

5 [[0, 1], [1,−1]]

6 [[0, 1], [0,−1]]

7 [[0, 1], [−1,−1, 1], [2, 0,−1]]

8 [[0, 1], [0,−3, 0, 1], [0, 3, 0,−1], [0,−1]]

9 [[0, 1], [−2,−1, 1], [2, 0,−1]]

10 [[0, 1], [0,−3, 0, 1], [0, 3, 0,−1], [0,−1]]

11 [[0, 1], [0,−3, 0, 1], [1, 2,−3,−1, 1], [−2, 0, 4, 0,−1], [2, 0,−1]]

12 [[0, 1], [0, 4, 0,−1], [0,−4, 0, 1], [0,−1]]

13 [[0, 1], [0,−3, 0, 1], [0, 5, 0,−5, 0, 1], [1,−3,−3, 4, 1,−1], [−2, 0, 4, 0,−1], [2, 0,−1]]

14 [[0, 1], [0,−3, 0, 1], [0, 5, 0,−5, 0, 1], [0,−5, 0, 5, 0,−1], [0, 3, 0,−1], [0,−1]]

15 [[0, 1], [−2, 3, 1,−1], [−1,−4, 0, 1], [2, 0,−1]]

16 [[0, 1], [0,−3, 0, 1], [0, 5, 0,−5, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [0, 7, 0,−14, 0, 7, 0,−1], [0,−5, 0, 5, 0,−1],
[0, 3, 0,−1], [0,−1]]

17 [[0, 1], [0,−3, 0, 1], [0, 5, 0,−5, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [−1, 4, 6,−10,−5, 6, 1,−1],
[2, 0,−9, 0, 6, 0,−1], [−2, 0, 4, 0,−1], [2, 0,−1]]

18 [[0, 1], [0, 5, 0,−5, 0, 1], [0,−4, 0, 5, 0,−1], [0, 4, 0,−5, 0, 1], [0,−5, 0, 5, 0,−1], [0,−1]]

19 [[0, 1], [0,−3, 0, 1], [0, 5, 0,−5, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [1, 4,−10,−10, 15, 6,−7,−1, 1],
[−2, 0, 16, 0,−20, 0, 8, 0,−1], [2, 0,−9, 0, 6, 0,−1], [−2, 0, 4, 0,−1], [2, 0,−1]]

20 [[0, 1], [0,−3, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [0, 8, 0,−18, 0, 8, 0,−1], [0,−8, 0, 18, 0,−8, 0, 1],
[0, 7, 0,−14, 0, 7, 0,−1], [0, 3, 0,−1], [0,−1]]

21 [[0, 1], [0, 5, 0,−5, 0, 1], [2, 3,−4,−1, 1], [−3,−9, 1, 6, 0,−1], [−2, 0, 4, 0,−1], [2, 0,−1]]

22 [[0, 1], [0,−3, 0, 1], [0, 5, 0,−5, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [0, 9, 0,−30, 0, 27, 0,−9, 0, 1],
[0,−9, 0, 30, 0,−27, 0, 9, 0,−1], [0, 7, 0,−14, 0, 7, 0,−1], [0,−5, 0, 5, 0,−1], [0, 3, 0,−1], [0,−1]]

23 [[0, 1], [0,−3, 0, 1], [0, 5, 0,−5, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [0, 9, 0,−30, 0, 27, 0,−9, 0, 1],
[−1,−5, 15, 20,−35,−21, 28, 8,−9,−1, 1], [2, 0,−25, 0, 50, 0,−35, 0, 10, 0,−1],
[−2, 0, 16, 0,−20, 0, 8, 0,−1], [2, 0,−9, 0, 6, 0,−1], [−2, 0, 4, 0,−1], [2, 0,−1]]

24 [[0, 1], [0, 5, 0,−5, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [0,−8, 0, 6, 0,−1], [0, 8, 0,−6, 0, 1],
[0, 7, 0,−14, 0, 7, 0,−1], [0,−5, 0, 5, 0,−1], [0,−1]]

25 [[0, 1], [0,−3, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [0, 9, 0,−30, 0, 27, 0,−9, 0, 1],
[0,−10, 5, 30,−5,−27, 1, 9, 0,−1], [0, 10,−15,−15, 20, 7,−8,−1, 1], [−2, 0, 16, 0,−20, 0, 8, 0,−1],
[2, 0,−9, 0, 6, 0,−1], [−2, 0, 4, 0,−1], [2, 0,−1]]

26 [[0, 1], [0,−3, 0, 1], [0, 5, 0,−5, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [0, 9, 0,−30, 0, 27, 0,−9, 0, 1],
[0,−11, 0, 55, 0,−77, 0, 44, 0,−11, 0, 1], [0, 11, 0,−55, 0, 77, 0,−44, 0, 11, 0,−1],
[0,−9, 0, 30, 0,−27, 0, 9, 0,−1], [0, 7, 0,−14, 0, 7, 0,−1], [0,−5, 0, 5, 0,−1], [0, 3, 0,−1], [0,−1]]

27 [[0, 1], [0, 5, 0,−5, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [−2, 7, 1,−14, 0, 7, 0,−1], [2,−5,−4, 5, 1,−1],
[2,−1,−16, 0, 20, 0,−8, 0, 1], [−2, 0, 16, 0,−20, 0, 8, 0,−1], [−2, 0, 4, 0,−1], [2, 0,−1]]

... continued on next page

Note: the higher power coefficients not shown are all zero.

Example: n = 27: the first zero of C(27,x) is ρ(27), the second zero is 5ρ(27) − 5ρ(27)3 −
1ρ(27)5, etc.
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Table 4 continued: Zeros of C(n,x) in power basis (rising powers of ρ(n)) for
n = 28, ..., 30.

n power basis coefficients for < ρ0, ...,ρδ(n)−1 >

28 [[0, 1], [0,−3, 0, 1], [0, 5, 0,−5, 0, 1], [0, 9, 0,−30, 0, 27, 0,−9, 0, 1], [0,−11, 0, 55, 0,−77, 0, 44, 0,−11, 0, 1],
[0, 12, 0,−67, 0, 96, 0,−52, 0, 12, 0,−1], [0,−12, 0, 67, 0,−96, 0, 52, 0,−12, 0, 1],
[0, 11, 0,−55, 0, 77, 0,−44, 0, 11, 0,−1], [0,−9, 0, 30, 0,−27, 0, 9, 0,−1], [0,−5, 0, 5, 0,−1], [0, 3, 0,−1],
[0,−1]]

29 [[0, 1], [0,−3, 0, 1], [0, 5, 0,−5, 0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [0, 9, 0,−30, 0, 27, 0,−9, 0, 1],
[0,−11, 0, 55, 0,−77, 0, 44, 0,−11, 0, 1], [0, 13, 0,−91, 0, 182, 0,−156, 0, 65, 0,−13, 0, 1],
[1,−7,−21, 56, 70,−126,−84, 120, 45,−55,−11, 12, 1,−1], [−2, 0, 36, 0,−105, 0, 112, 0,−54, 0, 12, 0,−1],
[2, 0,−25, 0, 50, 0,−35, 0, 10, 0,−1], [−2, 0, 16, 0,−20, 0, 8, 0,−1], [2, 0,−9, 0, 6, 0,−1], [−2, 0, 4, 0,−1],
[2, 0,−1]]

30 [[0, 1], [0,−7, 0, 14, 0,−7, 0, 1], [0,−7, 0, 22, 0,−13, 0, 2], [0, 4, 0,−13, 0, 7, 0,−1], [0,−4, 0, 13, 0,−7, 0, 1],
[0, 7, 0,−22, 0, 13, 0,−2], [0, 7, 0,−14, 0, 7, 0,−1], [0,−1]]

...
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Table 5: Extended set M̂(n), first differences △M̂(n), and floor-pattern F(n) for composed odd squarefree
modulus n.

m n(m) 2 δ(n) M̂(n) △M̂(n) F(n)

1 15 8 [0, 1, 7, 11, 13, 17] [1, 6, 4, 2, 4] [2, 1, 0, 1, 0, 1, 2, 0]

2 21 12 [0, 1, 5, 11, 13, 17, 19, 23] [1, 4, 6, 2, 4, 2, 4] [1, 2, 0, 1, 0, 1, 0, 1, 0, 2, 1, 0]

3 33 20 [0, 1, 5, 7, 13, 17, 19, 23, 25, 29, 31, 35] [1, 4, 2, 6, 4, 2, 4, 2, 4, 2, 4] [1, 0, 2, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 2, 0, 1, 0]

4 35 24 [0, 1, 3, 9, 11, 13, 17, 19, 23, 27, 29, 31, 33, 37] [1, 2, 6, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4] [0, 2, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1,
5 · 7 0, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0]

5 39 24 [0, 1, 5, 7, 11, 17, 19, 23, 25, 29, 31, 35, 37, 41] [1, 4, 2, 4, 6, 2, 4, 2, 4, 2, 4, 2, 4] [1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1,
3 · 13 0, 1, 0, 1, 0, 1, 0, 2, 1, 0, 1, 0]

6 51 32 [0, 1, 5, 7, 11, 13, 19, 23, 25, 29, [1, 4, 2, 4, 2, 6, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4] [1, 0, 1, 0, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
3 · 17 31, 35, 37, 41, 43, 47, 49, 53] 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 0]

7 55 40 [0, 1, 3, 7, 9, 13, 17, 19, 21, 23, 27, 29, [1, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, [0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0,
5 · 11 29, 31, 37, 39, 41, 43, 47, 49, 51, 53, 57] 2, 6, 2, 2, 2, 4, 2, 2, 2, 4] 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0,

0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0]

8 57 36 [0, 1, 5, 7, 11, 13, 17, 23, 25, 29, 31, [1, 4, 2, 4, 2, 4, 6, 2, 4, [1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0,
3 · 19 31, 35, 37, 41, 43, 47, 49, 53, 55, 59] 2, 4, 2, 4, 2, 4, 2, 4, 2, 4] 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

2, 1, 0, 1, 0, 1, 0]

9 65 48 [0, 1, 3, 7, 9, 11, 17, 19, 21, 23, 27, 29, 31, 33, [1, 2, 4, 2, 2, 6, 2, 2, 2, 4, 2, 2, [0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1,
5 · 13 33, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 67] 2, 4, 4, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4] 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,

0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0]

10 69 44 [0, 1, 5, 7, 11, 13, 17, 19, 25, 29, 31, 35, 37, [1, 4, 2, 4, 2, 4, 2, 6, 4, 2, 4, 2, [1, 0, 1, 0, 1, 0, 2, 1, 0, 1, 0, 1, 0, 1, 0,
3 · 23 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71] 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4] 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0]

11 77 60 [0, 1, 3, 5, 9, 13, 15, 17, 19, 23, 25, 27, [1, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 2, 2, 6, 2, 2, [0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0,
7 · 11 29, 31, 37, 39, 41, 43, 45, 47, 51, 53, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4] 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1,

57, 59, 61, 65, 67, 69, 71, 73, 75, 79] 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0]

continued
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Table 5 ctnd.: Extended set M̂(n), first differences △M̂(n), and floor-pattern F(n) for composed odd squarefree
modulus n.

m n(m) 2 δ(n) M̂(n) △M̂(n) F(n)

12 85 64 [0, 1, 3, 7, 9, 11, 13, 19, 21, 23, 27, 29, 31, [1, 2, 4, 2, 2, 2, 6, 2, 2, 4, 2, [0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
5 · 17 33, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 2, 2, 4, 2, 2, 2, 4, 2, 4, 4, 2, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,

63, 67, 69, 71, 73, 77, 79, 81, 83, 87] 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4] 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0]

13 87 56 [0, 1, 5, 7, 11, 13, 17, 19, 23, 25, 31 [1, 4, 2, 4, 2, 4, 2, 4, 2, 6, 4, 2, 4, 2, 4, [1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 0, 1, 0, 1,
3 · 29 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4] 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

65, 67, 71, 73, 77, 79, 83, 85, 89] 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0]

14 91 72 [0, 1, 3, 5, 9, 11, 15, 17, 19, 23, 25, [1, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, [0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1,
7 · 13 27, 29, 31, 33, 37, 41, 43, 45, 47, 2, 4, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 6, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1,

51, 53, 55, 57, 59, 61, 67, 69, 71, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4] 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
73, 75, 79, 81, 83, 85, 87, 89, 93] 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0]

15 93 60 [0, 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 35, [1, 4, 2, 4, 2, 4, 2, 4, 2, 4, 6, [1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 0,
3 · 31 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

71, 73, 77, 79, 83, 85, 89, 91, 95] 4, 2, 4, 2, 4, 2, 4, 2, 4] 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

16 95 72 [0, 1, 3, 7, 9, 11, 13, 17, 21, 23, 27, [1, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, [0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0,
5 · 19 29, 31, 33, 37, 39, 41, 43, 47, 49, 4, 2, 2, 2, 4, 2, 2, 2, 6, 2, 2, 4, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0,

51, 53, 59, 61, 63, 67, 69, 71, 73, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4] 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
77, 79, 81, 83, 87, 89, 91, 93, 97] 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0,

0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0]

17 105 48 [0, 1, 11, 13, 17, 19, 23, 29, 31, 37, [1, 10, 2, 4, 2, 4, 6, 2, 6, [4, 0, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2,
3 · 5 · 7 41, 43, 47, 53, 59, 61, 67, 71, 73, 4, 2, 4, 6, 6, 2, 6, 4, 2, 2, 0, 2, 1, 0, 2, 1, 2, 3, 1, 0, 1,

79, 83, 89, 97, 101, 103, 107] 6, 4, 6, 8, 4, 2, 4] 0, 1, 3, 2, 1, 2, 0, 1, 2, 0, 2, 2,
1, 0, 1, 2, 0, 2, 1, 0, 1, 0, 4, 0]

...
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Table 6: Cycle structure of Gal(Q(ρ(n))/Q) for n = 1, 2, ..., 40.

n cycles

1 [[0]] = [[1]]

2 [[1]]

3 [[1]]

4 [[3, 1]]

5 [[3, 1]]

6 [[5, 1]]

7 [[3, 5, 1]]

8 [[3,7, 5, 1]]

9 [[5, 7, 1]]

10 [[3,9, 7, 1]]

11 [[3, 9, 5, 7, 1]]

12 [[5, 1], [7, 1], [11, 1]]

13 [[7, 3,5, 9, 11, 1]]

14 [[5, 3,13, 9, 11, 1]]

15 [[7,11, 13, 1]]

16 [[3, 9, 5,15, 13, 7, 11, 1]]

17 [[3, 9, 7,13, 5, 15, 11, 1]]

18 [[5, 11,17, 13, 7, 1]]

19 [[3, 9, 11, 5, 15, 7, 17, 13, 1]]

20 [[3,9, 13, 1], [7,9, 17, 1], [11, 1], [19, 1]]

21 [[11, 5,13, 17, 19, 1]]

22 [[3, 9, 17, 7,21, 19, 13, 5, 15, 1]]

23 [[3, 9, 19, 11, 13, 7, 21, 17, 5, 15, 1]]

24 [[5,23, 19, 1], [7, 1], [11,23, 13, 1], [17, 1]]

25 [[3, 9, 23, 19,7, 21, 13, 11, 17, 1]]

26 [[7, 3, 21, 9, 11,25, 19, 23, 5, 17, 15, 1]]

27 [[5, 25, 17, 23, 7, 19, 13, 11, 1]]

28 [[3, 9,27, 25, 19, 1], [5, 25,13, 9, 11, 1], [17, 9,15, 25, 23, 1]]

29 [[3, 9, 27, 23, 11, 25,17, 7, 21, 5, 15, 13, 19, 1]]

30 [[7,11, 17, 1], [13,11, 23, 1], [19, 1], [29, 1]]

31 [[3, 9, 27, 19, 5, 15, 17, 11, 29, 25, 13, 23, 7, 21, 1]]

32 [[3, 9, 27, 17, 13, 25, 11, 31, 29, 23, 5, 15, 19, 7, 21, 1]]

33 [[5, 25, 7, 31,23, 17, 19, 29, 13, 1]]

34 [[3, 9, 27, 13, 29, 19, 11, 33, 31, 25, 7, 21, 5, 15, 23, 1]]

35 [[3, 9, 27, 11, 33,29, 17, 19, 13, 31, 23, 1]]

36 [[5, 25,19, 23, 29, 1], [7, 23, 17, 25, 31, 1], [11, 23,35, 25, 13, 1]]

37 [[5, 25, 23, 33, 17, 11, 19, 21, 31, 7, 35, 27, 13, 9, 29, 3, 15, 1]]

38 [[13, 17, 7, 15, 33, 27, 29, 3,37, 25, 21, 31, 23, 5, 11, 9, 35, 1]]

39 [[7, 29, 31, 17, 37, 25, 19, 23, 5, 35, 11, 1]]

40 [[3,9, 27, 1], [7,31, 23, 1], [11,39, 29, 1], [13,9, 37, 1], [17,31, 33, 1], [19,39, 21, 1]]
...

Boxed and colored n-numbers indicate non-cyclic Galois groups. See Table 7.
Boldface numbers are nontrivial square roots Modd n, denoted by s in the text.
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Table 7: Non-cyclic Galois groups Gal(Q(ζ(n))/Q) , n ≤ 100

n ϕ(n) cycle structure no. of cycles Galoisgroup

8 4 23 3 Z2 × Z2

12 4 23 3 Z2 × Z2

15 8 42 22 4 Z4 × Z2

16 8 42 22 4 Z4 × Z2

20 8 42 22 4 Z4 × Z2

21 12 63 3 Z3 × Z2
2

24 8 27 7 Z3
2

28 12 63 3 Z3 × Z2
2

30 8 42 22 4 Z4 × Z2

32 16 82 41 22 5 Z8 × Z2

33 20 103 3 Z5 × Z2
2

35 24 122 62 4 Z4 × Z3 × Z2

36 12 63 3 Z3 × Z2
2

39 24 122 62 4 Z4 × Z3 × Z2

40 16 44 26 10 Z4 × Z2
2

42 12 63 3 Z3 × Z2
2

44 20 103 3 Z5 × Z2
2

45 24 122 62 4 Z4 × Z3 × Z2

48 16 44 26 10 Z4 × Z2
2

51 32 162 81 41 22 6 Z16 × Z2

52 24 122 62 4 Z4 × Z3 × Z2

55 40 202 102 4 Z5 × Z4 × Z2

56 24 67 7 Z3 × Z3
2

57 36 183 3 Z9 × Z2
2

60 16 44 26 10 Z4 × Z2
2

63 36 612 12 Z2
3 × Z2

2

64 32 162 81 41 22 6 Z16 × Z2

65 48 126 6 Z2
4 × Z3

66 20 103 3 Z5 × Z2
2

68 32 162 81 41 22 6 Z16 × Z2

69 44 223 3 Z11 × Z2
2

70 24 122 62 4 Z4 × Z3 × Z2

72 24 67 7 Z3 × Z3
2

75 40 202 102 4 Z5 × Z4 × Z2

76 36 183 3 Z9 × Z2
2

77 60 303 3 Z5 × Z3 × Z2
2

78 24 122 62 4 Z4 × Z3 × Z2

80 32 412 24 16 Z2
4 × Z2

2

Continued on the next page.
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Table 7 continued: Non-cyclic Galois groups Gal(Q(ζ(n))/Q) , n ≤ 100

n δ(n) cycle structure no. of cycles Galoisgroup

84 24 67 7 Z3 × Z3
2

85 64 164 82 44 10 Z16 × Z4

87 56 282 142 4 Z7 × Z4 × Z2

88 40 107 7 Z5 × Z3
2

90 24 122 62 4 Z4 × Z3 × Z2

91 72 128 68 16 Z4 × Z2
3 × Z2 ?

92 44 223 3 Z11 × Z2
2

93 60 303 3 Z5 × Z3 × Z2
2

95 72 362 182 4 Z9 × Z4 × Z2

96 32 84 43 26 13 Z8 × Z2
2

99 60 303 3 Z5 × Z3 × Z2
2

100 40 202 102 4 Z5 × Z4 × Z2
...

The cyclic group of order m is denoted by Zm. For all other values n ≤ 100 the Galois group is the
cyclic group Zϕ(n).

Only independent cycles are counted, i.e., cycles which appear as sub-cycles of the given ones have been
omitted.

The notation, e.g., 162 81 41 22, means that there are 2 cycles of order (length) 16, one cycle of order 8,
one cycle of order 4 and two cycles of order 2.

Direct products of identical cyclic groups are sometimes written in exponent form, e.g., Z2
2 stands for

Z2 × Z2.

Boxed and colored n-numbers indicate where some non-cyclic Galois group appears for the first time.
Some of the cycle graphs are shown in Fig. 4.
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Table 8: Non-cyclic Galois groups Gal(Q(ρ(n))/Q) , n ≤ 100

n δ(n) cycle structure no. of cycles Galoisgroup

12 4 23 3 Z2 × Z2

20 8 42 22 4 Z4 × Z2

24 8 42 22 4 Z4 × Z2

28 12 63 3 Z3 × Z2
2

30 8 42 22 4 Z4 × Z2

36 12 63 3 Z3 × Z2
2

40 16 46 6 Z4 × Z4

42 12 63 3 Z3 × Z2
2

44 20 103 3 Z5 × Z2
2

48 16 82 41 22 5 Z8 × Z2

52 24 122 62 4 Z4 × Z3 × Z2

56 24 122 62 4 Z4 × Z3 × Z2

60 16 44 26 10 Z4 × Z2
2

63 18 64 4 Z2
3 × Z2

65 24 122 62 4 Z4 × Z3 × Z2

66 20 103 3 Z5 × Z2
2

68 32 162 81 41 22 6 Z16 × Z2

70 24 122 62 4 Z4 × Z3 × Z2

72 24 122 62 4 Z4 × Z3 × Z2

76 36 183 3 Z9 × Z2
2

78 24 122 62 4 Z4 × Z3 × Z2

80 32 84 44 8 Z8 × Z4

84 24 67 7 Z3 × Z3
2

85 32 162 81 41 22 6 Z16 × Z2

88 40 202 102 4 Z5 × Z4 × Z2

90 24 122 62 4 Z4 × Z3 × Z2

91 36 124 4 Z4 × Z2
3

92 44 223 3 Z11 × Z2
2

96 32 162 81 41 22 6 Z16 × Z2

100 40 202 102 4 Z5 × Z4 × Z2
...

The cyclic group of order m is denoted by Zm. For all other n ≤ 100 cases the Galois group is the
cyclic group Zδ(n). The n values are given in A206552.

Only independent cycles are counted, i.e., cycles which appear as sub-cycles of the given ones have been
omitted.

The notation, e.g., 162 81 41 22, means that there are 2 cycles of order (length) 16, one cycle of order 8,
one cycle of order 4 and two cycles of order 2.

Direct products of identical cyclic groups are sometimes written in exponent form, e.g., Z2
2 stands for

Z2 × Z2.

Boxed and colored n-numbers indicate where some non-cyclic Galois group appears for the first time.
For the cycle graphs see Fig. 4.
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δ=8:  Z_4 x Z_2δ=4: Z_2 x Z_2 δ=12: Z_3 x Z_2 x Z_2 δ=16: Z_4 x Z_4

δ=20: Z_5 x Z_2 x Z_2 δ=16: Z_8 x Z_2 δ=24: Z_4 x Z_3 x Z_2 δ=16: Z_4 x Z_2 x Z_2

δ=18: Z_3 x Z_3 x Z_2 δ=32: Z_16 x Z_2 δ=36: Z_9 x Z_2 x Z_2

Figure 4: Cycle graphs for non-cyclic Galois groups Gal(Q(ρ(n))/Q) appearing for n = 1..100. δ is the
degree of C(n,x), the maximal polynomial of ρ(n), hence the order of the Galois group. See Table 8.
Continued on next page.
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δ=32: Z_8 x Z_4 δ=24: Z_3 x Z_2 x Z_2 x Z_2 δ=40: Z_5 x Z_4 x Z_2

δ=36: Z_4 x Z_3 x Z_3

Figure 4 continued: Cycle graphs for non-cyclic Galois groups Gal (Q(ρ(n))/Q) appearing for n = 1..100.
See Table 8.

57


	Introduction and Summary
	Regular polygon diagonals/side ratios (DSRs)
	Minimal polynomial of bold0mu mumu (n), its zeros, absolute term and factorization
	Splitting field bold0mu mumu QQQQQQ(bold0mu mumu (n)) for C(n,x), field extension and Galois group

