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A196837: Ordinary Generating Functions for Sums of Powers of the
First n Positive Integers

Wolfdieter L an g !

The sum of the k—th power of the first n positive integers (we use Sk(n) for the normalized sum),

n
Yk = n Sk(n) = ij, n € N, k € Ny, (1)

j=1

has an obvious exponential generating function (e.g.f. ) g(n,x) = Z n Sk(n) o viz
k=0 '
n nx
; e"t —1

- jo & T 2 D
o) = 307 - Sy ®

The second equation uses the finite geometric sum formula. For given n the sequence {X nk}zozo appears
as column no. n in the array [6] A103438 which is there called T'(m,n) (this is not a triangle, and this
entry uses a n = 0 column consisting only of zeros because there 0° := 0). See the example array given
there.

In order to derive the ordinary generating function (o0.g.f. ) one uses the general connection between

1 1
an e.g.f. g(x) and the corresponding o.g.f. G(z), namely L[g(t)] = F(p) = -G (—), with the Laplace
p

1 1
transformation £. Thus G(z) = —F <—> This connection derives from the elementary Laplace
x x
transform of the exponential function: L[e*!] = ———. From this the o.g.f. corresponding to the e.g.f.
p—Ss
¢! becomes G(r) = ﬁ. Therefore, whenever the Laplace transform of an e.g.f. g(x) is known, one

knows the o.g.f. , and vice versa.

In the case at hand we thus obtain the o.g.f. G(n,z) from the e.g.f. g(n,z) (using the linearity of £)

n

Glna) = . — 3)

st 1—ja

This is rewritten as
P(n,x)

_ (4)
H?:1 (1—-jz)

The numerator polynomials P(n,z) are the row polynomials of this triangle A196837. We list these
polynomials (computed by Maple 13 [5]) for n = 1..15 in Table 1. Sometimes there occurs factorization.
Here the partial fraction decomposition (p.f.d.) has been performed backwards: one searches for the

rational function G(n,z) with a given simple p.f.d.. This must have appeared earlier in the literature,
but the author was not (yet) able to find it in some standard books.

G(n,x) =
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An equivalent definition of these row polynomials is thus

n

P(n,z) = Zl—l H 1—jx). (5)

l_

It is clear that P(n,x) is a polynomial of degree n — 1 (see also the later eq. 8). Note, en passant, that
the 0.g.f. can also be written in terms of the ¥ (or Digamma) function (¥(z) := (log I'(2))")

G(n,z)z%(l’<—%>—\1’<n+1—%>—1> . (6)

Because the o.g.f. for the column no. n of the Stirling2 triangle S2 A048993 without leading zeros is
1 [ee]

M (1—jz)

comparing coefficients of z¥,

Z S2(m + n,n)z™ (see e.g.,[2], p. 298, Theorem 8.10), one has from eq. 4, after

m=0

min(n—1,k)
Ynf = nSun) = Z P(n,m)S2(k+mn—m,n) (7)

m=0

with the coefficients P(n,m) = A196837(n,m) of the row polynomial P(n,z). (Remember that the
(infinite) matrix S2 has zeros above the main diagonal (it is lower triangular), therefore the upper limit
of the sum is as given.) This P triangle organizes the sum over the kth power of the first n positive
integers in terms of the nth column of the Stirling triangle S2 read backwards starting with row no.
k+n.

From eq. 5 it is clear that one also has

n

ﬁl—lw. (8)

j=1 1=
+j

Sl

This shows explicitly that P(n,x) is a polynomial having degree n — 1. Now the elementary symmetric

functions o,,(1,2,...,n) enter the stage because they are given here by
n n

H(l —jx) = Z (=)™ opm(1,2,...,n) 2™ with o9 = 1. From this expansion o,,(1,2,....,.n) =
j=1 m=0
Z ayaz -y, with (n) terms. Now this is, in fact, |S1(n + 1,n + 1 — m)|, as one
m

1<ai<az<...<am<n
can prove by mapping this problem to the combinatoric interpretation of the Stirling numbers of the

first kind S1 as cycle counting numbers of permutations. The signed lower triangular matrix S1 is given
in A048994. For a proof of this see [7], p.19, Second proof. In the jth term of the sum of eq. 8 the
number j is excluded from the product. Therefore one gets elementary symmetric expressions for n — 1
numbers. However, one does not have to go into these sums in detail, because by a symmetry and count-
ing argument one is led immediately to the result for P(n,m), the coefficient of 2™ of P(n,x). Each of
the n product terms in the sum of eq. 8, when written in terms of the elementary symmetric function

-1
om(1,2,...,f,...,n), form € {0,1,...,n — 1}, has <nm ) terms. Altogether (summed over j) there are

n [e—
n < (signed) terms with products of m numbers multiplying ™. Each product with m factors
m

from all the numbers from {1,2,...,n} appears, even though in the individual j-th term from eq. 8 one
number, namely j, was missing. It is clear by symmetry that for each of these distinct products the
multiplicity with which it appears has to be the same. Therefore one finds this multiplicity number M
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n—1

from the equation n < > =M (n) , the latter binomial being the number of terms of o,,,(1,2, ..., n).
m

m
Therefore M = n —m, and this proves that the triangle P(n,m) = A196837(n,m) is given by

Pn,m) = (=)™ (n—m)|SI(n+1,n+1—-—m)] = (n—m)Sl(n+1,n+1—m). 9)

This leads to the following formula for the sums of powers of positive integers.

min(k,n—1)
Ynk = nSy(n) = Z (n—m)Sl(n+1,n+1-m)S2(n+k—m,n) ,ne N keNy. | (10)

m=0

To the knowledge of the author this is a novel formula. In the Figure this product is illustrated, and the

1
example n = 5, k = 3is given. For £ = 1 this is true due to the fact that —S1(n+1,n) = w =

S2(n + 1,n) which follows, e.g.,from the recurrence relations.

Two known formulae expressing ¥ n* in terms of Stirling2 numbers and binomials are due to Knuth [4],
p- 285, and they are for n € N and k£ € Ny

k

m=1

m—+1

k
(@) Sk = 3 (~1)F " ml S2(k, m) <"+m> (12)

m=0

It is clear that the method of this note can be applied also to alternating sums of powers.

The author would appreciate information on the literature covering this o.g.f. G(n, ), the used reverse
p.f.d. and formula eq. 10.

For a short historical account on these sums of powers of integers see Edwards [3] and Knuth [4], where
also further references are found. See also A093556. The references to books by Ivo Schneider and Kurt
Hawlitschek on Johannes Faulhaber (1580-1635) are found there and in A093645.

Addendum, Oct 23 2011: Power sums as polynomials in n

In order to obtain ¥ n* as a polynomial in n one can use, as done in the derivation of eq. (12), first a

basis change from n* to rising factorials n! (see. e.g. the Graham et al. reference given under A196838,
- Sae
lk k+1

eq. (6.12), p. 249), then sum, using the fundamental identity lg_l 0= h (a standard binomial

formula). In this way one derives Knuth’s eq. (12). Now one transforms back from rising factorials to

the power basis with the help of Stirlingl numbers (see, e.g., the mentioned Graham et al. reference, eq.
(6.13), p. 249), and finds the following formula.

k+1
ok = Z r(k,m)n™, k € Nog, n € N, with the rational number triangle
m=1
, r 1
r(k‘,m) — (71)k+lfm Z 52(]{, l) Sl(l +1, 777,) 111 (13)

l=m—1

with the Stirling numbers of the first and second kind S1 and 52, found under A048994 and
A048993, respectively. This rational triangle r(n,m) is given under A196840(k,m)/A162299(k + 1, m).
There one can also find the standard formula for r(k,m) in terms of Bernoulli numbers B(n) =
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B 1-—
A027641(n)/A027642(n). This leads to an identity expressing % <k>, form=1,..,k—1,
—m \m

by this sum over the Stirling numbers eq. (13).

Addendum, Oct 31 2011: Alternating power sums
As mentioned above, the o.g.f. of alternating power sums of positive integrs can be found similarly. For

each n > 1 one defines the alternating power sums as

Snf = Z(—l)"‘jjk ,neN keN. (14)
j=1

We mention, en passant, the well known result for & > 1, [1], p. 804, 23.1.4. (it is clear that Sk
vanishes for k& = 0 if n is even , and it is 1 for odd n).

- 1
Sk = 5 (Be(n+1) + (-1)" Ex(0))), n € N, k € N, (15)
with the Euler polynomials Fj(z), whose rational coefficients are shown in A060096,/A060097.
s k
The e.g.f. is defined by g(n,z) := Sk %, and it is obvously given by
k=0 '

3

. (_1)n—1 + e

i = —1) el = 16
g(n,z) = ) (=1)"e € 1 o (16)
7j=1
[e.e]
The corresponding o.¢.f. G(n,z) = Z S nF 2 is found via Laplace transformation, like in the main
k=0
part of this note, and it is
n A
A _i 1 P(n,z)
G(n,z) = —1)"7 — = . 17
) = 3V T = i (17)
]7
with the numerator polynomials P given by
n ) n
Plnz) = (-1 S (<) [T (- da), (15)
j:l =1
1]

Now one treats the even and odd n case separately.
Even n case (n = 2p):

It is clear that for even n the 2V term vanishes because of the alternating sum. Maple [5] shows that one
should also extract a factor p, and this leads to the following Ansatz.

A _ pre(p,x)

B AT "
with Qe(p,x) given by
1 2p " 2p
_ - Y _
Qetr) = 2 3o [l - 1), (20)

1#]
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This is a polynomial of degree 2p — 1 — 1 = n — 2. In order to obtain a formula for the coefficients

Qe(n,m) := [2™]Qe(p,r) one considers the coefficient of 2™, for m € {0,1,...,2(p — 1)} in the
j—sum for —px Qe(p, z) (the term for m = —1 vanishes, as mentioned above). Group together pairs of
consecutive terms in this j—sum, namely the terms for j = 2¢ — 1 and j =24, fori = 1,2,..,p . In

each of these pairs the terms from the elementary symmetric functions o,,41 neither with factor 27 — 1
nor with 2¢ cancel, and thus the remaining positive terms of o,,41 have a factor 27 but not 2¢ — 1
(because of [ # j =24 — 1). Similarly the left over corresponding negative terms have no factor 27 but
the factor 2¢ — 1. Therefore one can combine these pairs to produce (2¢ — (2¢ — 1)) 0,,(1,2,..,n0( 27 —
1,24),...,2p) = o0m,(1,2,..,n0( 27— 1,24),...,2p). Thus one is led to the elementary symmetric functions
om with two adjacent numbers omitted. The family of number triangles for such functions will be called
S;j(n,m), for 1 < ¢ < I < n, in the general case. Here i — 2i¢ — 1,5 — 2i. In order to have
triangles one takes for n < i the usual elementary symmetric functions o,,(n), and for n > i one defines
Sij(n,m) == on(1,2,..,4,.... f,...,n +2). This guarantees that each term has n factors. The triangles
S1,2(n,m) and S34(n,m) are shown in [6] as A196845 and A196846, respectively (m is there called k).
The entries of these triangles are expressed in terms of triangles of the type S;(n, m)with the number j
omitted in o,,, which, in turn, are found from the Stirling numbers of the first kind. With the notation of

~(-1)"

these number triangles one finds Qe(n, m), form € {0,1,...,2(p—1)} (after multiplication with ———,

p
remembering that the z in the denominator has been acounted for by considering coefficients of 1),

with the following result.

Qe(n,m) = (=1)™ =" Syi12:(2(p — 1),m) . (21)
i=1

"=

This number triangle is given in A196848, and the polynomials Qe(p,x) are shown for p = 1,...,10 in

Table 2.

Odd n case (n = 2p + 1):

In the odd n case it is clear that the coefficient of 2% in Qo(p, z) := ]5(2]9 + 1,z), forp € {0,1,...,2p =
n — 1} is always 1. Extracting coefficients of (—1)™ 2™ in the j—sum in eq. (17) for n = 2p + 1, one
proceeds like above by considering pairs of consecutive odd and even js, with the last term, the one
for j = 2p + 1, left unpaired. This last term is the elementary symmetric function o,,(1,2,...,2p) =
|S1(2p + 1,2p + 1 — m)|. With the definition of the number triangles Sa; 1 2:(n,m) given above the

~

result for Qo(p,m) = [z™] P(2p + 1,x) becomes
1 if m=20,

P
(=)™ (Z S2ic12i(2p +1,m — 1) + |S12p + 1,2p + 1 — m)|> it me {1,2,...,2p} .
=1
(22)
This number triangle is given in A196847, and the polynomials Qo(p,z) := P(2p + 1,z) are shown for
p =0,...,9 in Table 3.

Addendum, Nov 01 2011: O.g.f.s for fixed powers and Eulerian numbers

o

The o.g.f. é(k, x) = Z S nF 2" can be computed using the so called Worpitzky identity involving the
n=1

Eulerian numbers E(n,m) shown in A173018. For this identity and the hint to use it for power sums see

the Graham et al. reference given under A196838, eq. (6.37) on p. 255. The formula for the power sums
is

k
+p+1
Snf =3 B " - 2
n = (kap) < ]C—'— 1 ) 5]6,0 B ( 3)
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with the FEulerian number triangle F(n,m) and the Kronecker § symbol. From this one finds the o.g.f.
in terms of the row polynomials, the Eulerian polynomials.

~ x

G(k,z) = mEulerian(k:,x) , ke Ng. (24)

This formula has been given by Vladeta Jovovic in a comment in the formula section of A000538. He
also gave the e.g.f. for these 0.g.f. s.

The author would like to thank Gary Detlefs for comments, and for pointing out some typos.

References

[1] Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Stan-
dards Applied Math. Series 55, Tenth Printing, reprinted as Dover publication, seventh printing
1968, New York, 1972

[2] Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, 2002

3] A. W. F. Edwards, “Sum of powers of integers: a little of the history”, Math. Gazette 66 (1982)
22-29

[4] D. E. Knuth, “Johann Faulhaber and Sums of Powers”, Maths. of Computation, 61 203 (1993)
277-294, also available under http://arxiv.org/abs/math/9207222

[5] Maple”™  http://www.maplesoft.com/

[6] The On-Line Encyclopedia of Integer Sequences’,  published electronically —at
http://oeis.org,2010

[7] R. P. Stanley, Enumerative Combinatorics, Vol. I, Cambridge University Press, 1997

AMS MSC numbers: 05A15, 11B73, 11C08

OEIS A-numbers:A000538, A027641, A027642, A048993, A048994, A053154, A060096, A060097,
A093556, A093645, A103438, A162299, A173018, A196837, A196838, A198640, A196845, A196845, A198628.



http://oeis.org/A000538
http://arxiv.org/abs/math/9207222
http://www.maplesoft.com/
http://oeis.org, 2010
http://oeis.org/A000538
http://oeis.org/A027641
http://oeis.org/A027642
http://oeis.org/A048993
http://oeis.org/A048994
http://oeis.org/A053154
http://oeis.org/A060096
http://oeis.org/A060097
http://oeis.org/A093556
http://oeis.org/A093645
http://oeis.org/A103438
http://oeis.org/A162299
http://oeis.org/A173018
http://oeis.org/A196837
http://oeis.org/A196838
http://oeis.org/A198640
http://oeis.org/A196845
http://oeis.org/A196845
http://oeis.org/A198628

Figure

Sums of powers of the first n positive integers

S2 S1

column no. n -

n+k-M -+ - 4
i | row no. n+1

* PR * *

n+1-M ... n-1n

n+k M = min(n—-1,k) +1
Example:

n=5, k=3, M= min(4,3)+1 =4
1*5*1050 — 15*4*140 + 85*3*15 — 225*2*1 = 225

P+ 2+ 3 + 3 +%5 21+8+27+64+125=225



Table 1 : Row polynomials of A196837 forn = 1,2,...,15.

n P(n,x)

1 |1

2 [2-3z

3 [3—-122+ 1122

4 |4-30x+702%-502% =2(2—-52)(1—5x+52%)

5 | 5—60x 4+ 2552% — 450 2° 4+ 274 2%

6 | 6—1052 4+ 70022 — 2205 2> + 3248 2% — 1764 2° =
(2—7x) (3 — 42z + 20322 — 39223 + 252 2%)

7 | 7—1682 + 161022 — 7840 23 + 20307 2* — 26264 z° + 13068 5

8 | 8—252x+ 327622 — 22680 2> + 89796 2 — 201852 2° + 236248 25 — 109584 27 =
4(2—-9z) (1 — 272 + 28822 — 1539 23 + 4299 2* — 5886 x° 4 3044 2)

9 | 9—360z 4+ 609022 — 56700 23 + 316365 2* — 1077300 2° + 2171040 2% — 2345400 27 + 1026576 2:°

10 | 10 — 495z + 10560 2 — 127050 2> + 946638 2* — 4510275 2° + 13667720 2% — 25228500 27 +
25507152 28 — 10628640 22 =
(2 —11xz) (5 — 2202 + 4070 2% — 41140 2% + 247049 2* — 896368 2° + 1903836 25 — 2143152 27 +
966240 %)

11 | 11 — 660z + 17325 2% — 261360 2> + 2501961 2* — 15825348 2° + 66697675 25 — 183982920 2" +
315774228 28 — 301835952 ¥ + 120543840 210

12 | 12 — 858z + 27170 2% — 501930 2> + 5995704 2* — 48486438 2° + 269941386 25 — 1030350750 =" +
2628827344 28 — 4242044664 2° + 3863119104 20 — 1486442880 2t =
2(2—132) (3 — 1952 + 5525 22 — 89570 23 + 916721 z* — 6162923 2 + 27426347 26 — 79316432 27 +
141650028 28 — 139785984 2 + 57170880 2:19)

13 | 13 — 1092 2 + 41041 2% — 910910 23 + 13270257 2% — 133357224 2° + 945255311 2% — 4745658918 7 +
16680593930 2% — 39830815024 z° + 60941259288 10 — 53193434112 2 + 19802759040 2

14 | 14 — 1365z + 60060 22 — 1576575 23 + 27497470 z* — 335810475 2° + 2947292920 6 —
18770176425 27 + 86455937568 ¥ — 283316833800 2 + 638886422720 210 — 932967781200 z!! +
784313595648 12 — 283465647360 13 =
(2 —152) (7 — 630z + 25305 22 — 598500 23 + 9259985 2+ — 98455350 2° + 735231335 26 —
3870853200 2" + 14196569784 28 — 35184143520 ° + 55562134960 210 — 49767878400 21 —
18897709824 x'?)

15 | 15 — 1680 = + 85540 22 — 2620800 > + 53895842 % — 785584800 z° + 8352861660 x° —

65661024000 227 + 382417906871 25 — 1636819264080 2° + 5048360535400 210 —
10827253382400 211 + 15170987111472 212 — 12331635229440 13 + 4339163001600 214



http://oeis.org/A196837

Table 2 : Row polynomials of A196848 p=1,...,10

| p=n/2|

Qe(p,x)

1

1

1—5x+ 722

1— 142+ 7322 — 168 23 + 148 22

1—272 429822 — 1719 2% + 5473 2% — 9162 2° + 6396 °

[SNN RN V)

1 —44x + 83022 — 8756 25 + 56453 2% — 227744 2° + 562060 25 — 778800 27 +
468576 =8

(=)

1 —65x + 186522 — 31070 23 + 332463 z* — 2385305 2° + 11612795 26—
37875240 27 + 79269676 28 — 96420480 22 + 52148160 10

1 =90z + 3647 22 — 87900 2° + 1402023 2* — 15575130 2° + 123448001 26—
702763920 27 + 2849969416 28 — 8027712480 22 + 14918150352 210 —
16460801280 ! + 8203541760 12

1 — 1192 + 6468 22 — 212653 23 + 4720646 x* — 74781147 x° + 870968684 16 —
7569404479 27 + 49281440145 28 — 238993012874 22 + 849263860648 210 —
2143751307768 =1t 4+ 3635508507408 212 — 3714722544960 23 + 1733641056000 14

1 — 1522 + 10668 22 — 458584 2% + 13503966 2* — 288617448 2° + 4627515940 25 —
5672754167227 + 536863254585 28 — 3931950087968 z° + 22191960382536 210 —
95428928224224 ' + 306299819370448 21?2 — 709182345858432 213 + 1117412056889856 14 —
1072199396459520 2'° + 473875121664000 16

10

1 — 1892 + 1663522 — 905436 22 + 34130706 2* — 945559566 2° + 19938286870 20 —
326943834588 227 + 4223081431941 28 — 43254549907821 22 4 351833219573295 210 —
2265342943068576 11 + 11450188172985976 12 — 44781233983066224 13 +
132447580643617200 4 — 285758630338003200 z'° + 423616834840939776 16 —
385562909165414400 z'7 + 162705528979660800 28

Example: The o.g.f. for the sequence {—(1F — 2% 4 38 — 4k)} (p = 2,n = 4), found in 2¥A053154, is

_ 2z(1 -5z +7a%

Ge(2,x) H?:1(1 ")
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Table 3 : Row polynomials of A196847 p =0,...,9

=n-l Qo(p,x)

1

1—4x+ 522

1—24x+ 23822 — 1248 22 + 3661 2* — 5736 2° + 3828 26

P
0
1
2 1—12z+552% — 11423 + 94 2%
3
4

1 —40x + 690 22 — 6700 22 + 40053 2* — 151060 22° + 351800 25—
465000 =7 + 270576 28

5 1 —60x + 1595 22 — 24720 2% + 247203 2* — 1665900 2° + 7660565 26—
23745720 27 + 47560876 28 — 55805520 22 + 29400480 210

6 1 — 84z + 318522 — 72030 22 + 1081353 2% — 11344872 2° + 85234175 26—
461800710 27 + 1790256286 28 — 4843901664 z° + 8693117160 210 —
0320129280 2! + 4546558080 12

7 1— 1122 + 5740 22 — 178304 2® + 3747982 21 — 56355936 2° + 624649940 25 —
5180978432 27 + 32290710473 28 — 150403364272 2 + 515162381720 210 —
1258326123264 x11 + 2073788193744 2 — 2069274574080 213 + 948550176000 x4

8 1 — 144 2 + 9588 22 — 391608 2° + 10974894 2* — 223638408 z° + 3425288452 26
—40195145304 27 + 364960154409 28 — 2570591813832 Y + 13988743440672 219 —
58158727694928 11 4 181015904743696 2 — 407711994791616 2 + 627139182204288 214 —
589805676956160 z1° + 256697973504000 216

9 1 — 180z + 15105 22 — 784800 2> + 28275306 2* — 749742840 2° + 15153672490 2.0 —
238561930800 27 + 2963426487261 28 — 29242932326100 22 + 229608908058405 210
—1430012790032400 z'' + 7006810619981656 =12 — 26626572692739360 3 +
76710622505994000 214 — 161648143661520000 2'° + 234739505890123776 216 —
209987960948075520 27 + 87435019510272000 28

Example: The o.g.f. for the sequence {1¥ — 2F 4+ 3k — 4% 1 5’“}20:0 (p =2,n =25), found in A198628, is

1—-12 5522 — 114 23 + 94 24
G0(2,x):( x+5:c , vt :c)
[ (1 —j=)

10
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