# A201198: Counting Walks on Jacobi Graphs: An Application of Orthogonal Polynomials 

Wolfdieter L a $\mathrm{ng}{ }^{1}$

If the tridiagonal symmetric Jacobi matrix $\mathbf{J}_{N}$ associated with the three term recurrence of an orthogonal polynomial system $(O P S)$ in one variable has nonnegative integer entries one can interpret $\mathbf{J}_{N}$ as the vertex-vertex (or adjacency) matrix of a graph which will be denoted also by $\mathbf{J}_{N}$. In this case we will call the graph a Jacobi graph associated with the corresponding $O P S$. We consider two types, the open graphs and the closed ones. In the closed case the vertex no. $N$ is connected with the vertex no. 1.
a) Open case: $\mathbf{J}_{N} \equiv \mathbf{J}_{N}\left(\left\{c_{k}\right\}_{0}^{N-1},\left\{b_{k}\right\}_{1}^{N-1}\right) c_{k} \in \mathbb{N}_{0}, b_{k} \in \mathbb{N}$

$$
\mathbf{J}_{N}=\left(\begin{array}{ccccc}
c_{0} & b_{1} & & &  \tag{1}\\
b_{1} & c_{1} & b_{2} & & 0 \\
& \ddots & \ddots & \ddots & \\
0 & & b_{N-2} & c_{N-2} & b_{N-1} \\
& & & b_{N-1} & c_{N-1}
\end{array}\right)
$$

b) Closed case: $J_{N} \equiv J_{N}\left(\left\{c_{k}\right\}_{0}^{N-1},\left\{b_{k}\right\}_{0}^{N-1}\right) c_{k} \in \mathbb{N}_{0}, b_{k} \in \mathbb{N}$

$$
J_{N}=\left(\begin{array}{ccccc}
c_{0} & b_{1} & & & b_{0}  \tag{2}\\
b_{1} & c_{1} & b_{2} & & 0 \\
& \ddots & \ddots & \ddots & \\
0 & & b_{N-2} & c_{N-2} & b_{N-1} \\
b_{0} & & & b_{N-1} & c_{N-1}
\end{array}\right)
$$

See the Figures 1 and 2 for the skeleton of these graphs where multilines have been denoted by a single line with multiplicity.


FIG. 1: Open Chain Graph Skeleton $\boldsymbol{J}_{\mathbf{N}}$
FIG. 2 : Closed Chain Graph Skeleton $\quad J_{\mathbf{N}}, \mathbf{N}=10$
For example, if $c_{k}=0$ and $b_{k}=1$ for $k \in\{0,1, \ldots, N-1\}$, one has the graphs $\mathbf{J}_{N}=P_{N}$, the simple path with $N$ vertices and $N-1$ lines, and $\mathbf{J}_{N}=C_{N}$, the cycle graph with $N$ vertices and $N$ lines.

[^0]Obviously these graphs belong to the Chebyshev polynomials $S_{N}(x)$, members of the classical Jacobi $O P S$, whose coefficient array is shown in [4] A049310. Their recurrence is $S_{n}(x)-x S_{n-1}(x)+S_{n-2}(x)=$ $0, S_{-1}(x)=0$ and $S_{0}(x)=1$. In general the three term recurrence for any monic $O P S$ with positive moment functional is, due to Favard's theorem, e.g., [1], p. 21-22, Theorem 4.4. (we need $b_{n}^{2}>0$ for $n \in \mathbb{N}$ and $c_{n} \in \mathbb{R}$, for $n \in \mathbb{N}_{0}$ )

$$
\begin{equation*}
\tilde{P}_{n}(x)=\left(x-c_{n-1}\right) \tilde{P}_{n-1}(x)-b_{n-1}^{2} \tilde{P}_{n-2}(x) \tag{3}
\end{equation*}
$$

with standard input $\tilde{P}_{-1}(x)=0$ and $\tilde{P}_{0}(x)=1$. Note that $b_{0}^{2}<\infty$ multiplies 0 and is therefore free, sometimes it is put to 1 , but one can keep it arbitrary. The $b_{0}$ used for closed graphs should not be confused with this arbitrary number. One also needs the first and sometimes higher associated polynomials, obtained by shifting the recurrence coefficients by 1 or more. In cases like the Chebyshev- $S$ $O P S$, where these coefficients are $n$-independent, these associated polynomial systems coincide with the original ones, the zeroth order $O P S$.

$$
\begin{equation*}
\tilde{P}_{n}^{[m]}(x)=\left(x-c_{n-1+m}\right) \tilde{P}_{n-1}^{[m]}(x)-b_{n-1+m}^{2} \tilde{P}_{n-2}^{[m]}(x), \tilde{P}_{-1}^{[m]}(x)=0, \tilde{P}_{0}^{[m]}(x)=1, m \in N_{0} \tag{4}
\end{equation*}
$$

These $O P S$ with nonnegative coefficients play a rôle in walk counting on Jacobi graphs which is now explained in detail.

## Definition 1: number of walks

$w_{N, L}\left(p_{n} \rightarrow p_{m}\right)$ denotes the number of walks (paths) of length $L$ on an open $\mathbf{J}_{N}$ graph from vertex $p_{n}$ to vertex $p_{m}$. Similarly, we use $\mathrm{w}_{N, L}\left(p_{n} \rightarrow p_{m}\right)$ for a closed $J_{N}$ graph.
Of course, one has to have symmetry: $w_{N, L}\left(p_{n} \rightarrow p_{m}\right)=w_{N, L}\left(p_{m} \rightarrow p_{n}\right)$ for all $n, m \in\{1,2, \ldots, N\}$. One defines $w_{N, 0}\left(p_{n} \rightarrow p_{m}\right):=\delta_{n, m}$, with Kronecker symbol $\delta$. Similarly for $\mathrm{w}_{N, L}$. The following proposition, which holds in fact for all symmetric adjacency matrices, not just tridiagonal ones, is obvious. See also [2], part III, D. The Matrix Method.

## Proposition 1: Matrix power elements

$$
\begin{equation*}
w_{N, L}\left(p_{n} \rightarrow p_{m}\right)=\left(\left(\mathbf{J}_{N}\right)^{L}\right)_{n, m} \tag{5}
\end{equation*}
$$

and analogously for $\mathrm{w}_{N, L}\left(p_{n} \rightarrow p_{m}\right)=\left(\left(J_{N}\right)^{L}\right)_{n, m}$. The walk counting symmetry is reflected in the symmetry of the adjacency matrices.
Definition 2: Average number of round trips

$$
\begin{equation*}
w_{N, L}:=\frac{1}{N} \sum_{n=1}^{N} w_{N, L}\left(p_{n} \rightarrow p_{n}\right) \tag{6}
\end{equation*}
$$

$\mathrm{w}_{N, L}$ is defined analogously. Because $w_{N, L}\left(p_{n} \rightarrow p_{n}\right)$ is the number of walks starting and ending with vertex $p_{n}$ (also for $\mathrm{w}_{N, L}\left(p_{n} \rightarrow p_{n}\right)$ ), this is the number of round trips related to vertex $p_{n}$. If a graph is vertex-transitive (meaning that the graph without labeling looks the same from each vertex) $w_{N, L}$, or $\mathrm{w}_{N, L}$, is the number of round trips from any of the vertices. This happens, e.g., for each $\mathbf{C}_{N}, N \geq 2$, graph or for the $\mathbf{P}_{1}$ and $\mathbf{P}_{2}$ graphs. In general $w_{N, L}$ or $w_{N, L}$, is then the average number of round trips pro vertex which may be a fraction.
Proposition 2: Normalized sums of powers of eigenvalues of adjacency matrix

$$
\begin{equation*}
w_{N, L}=\frac{1}{N} \operatorname{Tr}\left(\mathbf{J}_{N}^{L}\right)=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}^{(N)}\right)^{L} \tag{7}
\end{equation*}
$$

with the eigenvalues of the adjacency matrix $\mathbf{J}_{N}$, and a similar proposition holds for for $\mathrm{w}_{N, L}$. This proposition is true for every symmetrc adjacency matrix. These eigenvalues are the zeros of the characteristic (monic) polynomials $\tilde{P}_{N}(x)=\operatorname{Det}\left(x \mathbf{1}_{N}-\mathbf{J}_{N}\right)$. This leads to a simple formula for the o.g.f.
of $w_{N, L}$, called $G_{N}(z):=\sum_{L=0}^{\infty} w_{N, L} z^{L}$ (with a similiar definition for $\mathcal{G}_{N}(z)$ in the closed graph case), namely
Proposition 3: O.g.f. $\mathbf{G}_{\mathbf{N}}(\mathbf{z})$ or $\mathcal{G}_{\mathbf{N}}(\mathbf{z})$ ([3] Theorem 5)

$$
\begin{equation*}
G_{N}(z)=\left.\frac{1}{N} \frac{x \tilde{P}_{N}^{\prime}(x)}{\tilde{P}_{N}(x)}\right|_{x=1 / z} \tag{8}
\end{equation*}
$$

## Proof:

This proposition holds also for every (symmetric) adjacency matrix.
Here for $G_{N}(z)$ with the characteristic polynomial $\tilde{P}_{N}(x)$ of $\mathbf{J}_{\mathbf{N}}$.
$E_{N}(z):=\prod_{n=1}^{N}\left(1-x_{n}^{(N)} z\right)=z^{N} \tilde{P}_{N}\left(\frac{1}{z}\right)$.
$\left(\log E_{N}(z)\right)^{\prime}=-\frac{1}{z} \sum_{n=1}^{N}\left(x_{n}^{(N)} z\right) \frac{1}{1-x_{n}^{(N)} z}=-\frac{1}{z} \sum_{L=0}^{\infty} \sum_{n=1}^{N}\left(x_{n}^{(N)}\right)^{L+1} z^{L+1}=$
$-\frac{N}{z} \sum_{L=1}^{\infty}\left(\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}^{(N)}\right)^{L}\right) z^{L}=-\frac{N}{z}\left(G_{N}(z)-1\right)$.
Hence $G_{N}(z)=1-\frac{z}{N} \log \left(z^{N} \tilde{P}_{N}\left(\frac{1}{z}\right)\right)^{\prime}=\left.\frac{1}{N} \frac{x \tilde{P}_{N}^{\prime}(x)}{\tilde{P}_{N}(x)}\right|_{x=1 / z}$
For closed graphs the same formula holds but with $\tilde{P}_{N}(x)$ replaced by the characteristic (monic) polynomial $\widetilde{P c}_{N}(x)$ for the adjacency matrix $J_{\mathrm{N}}$ from eq. (2). Now the the tridiagonality of the adjacency matrix of the corresponding open graph will enter. By expanding $\operatorname{Det}\left(x \mathbf{1}_{\mathbf{N}}-J_{\mathbf{N}}\right)$ repeatedly one finds the following proposition expressing $\widetilde{P c}_{N}(x)$ in terms of the open graph's characteristic polynomial and its first associate one.
Proposition 4: Characteristic polynomials for closed Jacobi graphs

$$
\begin{equation*}
\widetilde{P c}_{N}(x)=\tilde{P}_{N}(x)-b_{0}^{2} \tilde{P}_{N-2}^{[1]}(x)-2 \prod_{k=0}^{N-1} b_{k} \tag{9}
\end{equation*}
$$

If the classical $O P S$ recurrences are scanned for possible graph candidates one has to keep in mind that the three term recurrence for the monic polynomials has a freedom (a $\gamma$-transformation) explained in the following lemma.
Lemma 1: Freedom in the monic three term recurrence
With $\left\{\tilde{P}_{n}(x)\right\}$ satisfying the recurrence eq. (3), together with the given two inputs, also the monic polynomial system $\left\{\hat{P}_{n}(x)\right\}$, with $\hat{P}_{n}(x):=\gamma^{n} \tilde{P}_{n}\left(\frac{x}{\gamma}\right)$, with any $\gamma \in \mathbb{R} \backslash 0$, satisfies the same type of recurrence and inputs, but with $\hat{c}_{n-1}=\gamma c_{n-1}$ and $\hat{b}_{n-1}^{2}=\gamma^{2} b_{n-1}^{2}$.
Proof: Elementary.
Example 1: The adjacency matrix for the graph $\mathbf{C}_{2}$ has $c_{n-1}=0$ and $b_{n-1}=2$, therefore the characteristic polynomial is $\tilde{C}_{2}(x)=2^{2} S_{2}\left(\frac{x}{2}\right)=x^{2}-4$.
Now we scan the three families of classical OPS for a possible Jacobi graph interpretation.
a) Jacobi polynomials: $\left\{\tilde{P}_{n}^{(\alpha, \beta)}(x)\right\}, \alpha>-1, \beta>-1$ (for orthogonality on the interval $[-1,+1]$ with a certain known weight function $\left.w^{(\alpha, \beta)}(x)\right)$ :

The recurrence for the monic polynomials is for $n \geq 3$

$$
\begin{align*}
\tilde{P}_{n}^{(\alpha, \beta)}(x)= & \left(x-\frac{\beta^{2}-\alpha^{2}}{4\left(n+\frac{\alpha+\beta}{2}\right)\left(n+\frac{\alpha+\beta}{2}-1\right)}\right) \tilde{P}_{n-1}^{(\alpha, \beta)}(x) \\
& -\frac{1}{4} \frac{(n-1)(n+\alpha-1)(n+\beta-1)(n+\alpha+\beta-1)}{\left(n+\frac{\alpha+\beta}{2}-1\right)^{2}\left(n+\frac{\alpha+\beta-1}{2}\right)\left(n+\frac{\alpha+\beta-3}{2}\right)} \tilde{P}_{n-2}^{(\alpha, \beta)}(x) \\
\tilde{P}_{-1}^{(\alpha, \beta)}(x)= & 0, \tilde{P}_{0}^{(\alpha, \beta)}(x)=1 \tag{10}
\end{align*}
$$

Because of the denominators, given the above mentioned range of $\alpha$ and $\beta$ which implies $-\frac{\alpha+\beta}{2}<1$, one has to take care of the $n=1$ and $n=2$ cases. One uses $\tilde{P}_{1}^{(\alpha, \beta)}(x)=x+\frac{\alpha-\beta}{2+\alpha+\beta}$, as deduced from the non-monic case. This formula is also taken, by definition, for the cases $\alpha+\beta=0$ and $\alpha+\beta+1=0$ (even though in the derivation of the non-monic $n=1$ formula these cases are first excluded). For the case $\alpha+\beta+1=0$ the $n=2$ formula is $\tilde{P}_{2}^{(\alpha,-(\alpha+1))}(x)=x^{2}+\frac{4}{3}\left(\alpha+\frac{1}{2}\right) x-\frac{1}{3}+\frac{2}{3} \alpha^{2}+\frac{2}{3} \alpha$.
The search for characteristic polynomials of graphs proceeds in two steps. First one considers the recurrence of type eq. (3), written for $\hat{P}_{n}(x)$ according to lemma 1 , for $n \geq 3$, then the $n=2$ and $n=1$ cases are studied separately. For $n=0$ the input is always 1. $\hat{c}_{n-1}=\gamma c_{n-1}$ in eq. (3) should become a nonnegative integer for $n \geq 3$. Because the $n$-dependence of $c_{n-1}$ does not allow a cancellation of the denominators in the first term of the recurrence (10), and $\gamma$ is $n$-independent, this can only happen if $\beta^{2}=\alpha^{2}$, and then $c_{n-1}$ vanishes identically for $n \geq 3$. In the second term of the recurrence there is no $0 / 0$ problem for $n \geq 3$. Because the rational number multiplying $-\frac{1}{4}$ has monic polynomials in $n$ (of degree 4) in the numerator as well as in the denominator, it cannot become a square other than possibly 1. If $\alpha=\beta$ this is indeed possible precisely for $\alpha= \pm \frac{1}{2}$. Also for $\alpha=-\beta$ this is true for $\alpha= \pm \frac{1}{2}$. Therefore one has in both cases $\hat{b}_{n-1}^{2}=\gamma^{2} \frac{1}{4}$, and this determines $\gamma= \pm 2 k$, with $k \in \mathbb{N}$, and then $\hat{b}_{n-1}=k$ (it has to be positive) for $n \geq 3$.
Now the low $n$ values have to be considered. For $n=1$ one has for $\alpha=\beta$ also $c_{0}=0$, hence $\hat{c}_{0}=0$. For $\alpha=-\beta$ one has $c_{0}=-\alpha$, hence $\hat{c}_{0}=-\gamma \alpha=\mp 2 k \alpha$. This picks from the two $\alpha$ solutions from the $n \geq 3$ case $\alpha=+\frac{1}{2}$ for negative $\gamma$ and $\alpha=-\frac{1}{2}$ for positive $\gamma$. Thus $\hat{c}_{0}=k$ in both cases. $\mathbf{J}_{N}$ from eq. (1) shows that for the graph there are $k$ self-loops for vertex no. 1 in these two cases $(\alpha, \beta)=\left(+\frac{1}{2},-\frac{1}{2}\right)$ and $\left(-\frac{1}{2},+\frac{1}{2}\right)$. Remember that no $\hat{b}_{0}$ term appears.
As for $n=2$, only the case $\alpha+\beta+1$, i.e., $\alpha=\beta=-\frac{1}{2}$ is special (for the other cases the recurrence is valid for $n=2$ with the above determined $\left.\hat{P}_{1}(x)\right)$. $\tilde{P}_{2}^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(x)=x^{2}-\frac{1}{2}\left(\right.$ not $x^{2}-\frac{1}{4}$ as one might incorrectly guess from the recurrence with the rational in the second term taken as 1). Thus $\hat{P}_{2}^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(x)=x^{2}-2 k^{2}$. However, from the recurrence (3), written for the monic $\hat{P}$-polynomials, this corresponds to $\hat{c}_{1}=0$ (because $\hat{c}_{0}=0$ in this case) and $\hat{b}_{1}^{2}=2 k^{2}$, and therefore this case has to be discarded because $\hat{b}_{1}$ is not integer. This concludes the analysis, and the result is stated in the following proposition.

## Proposition 5: Jacobi graphs for the Jacobi OPS

i) $\alpha=\beta=+\frac{1}{2}: \hat{c}_{n-1}=0$, for $n \geq 1$ and $\hat{b}_{n-1}=k, k \in \mathbb{N}$, for $n \geq 2$. These graphs look like $\mathbf{P}_{N}$ graphs but with $k$-multi-lines but no self-loops. The characteristic polynomials are $\hat{P}_{n}^{\left(\frac{1}{2}, \frac{1}{2}\right)}(k ; x)=$ $k^{n} S_{n}\left(\frac{x}{k}\right)$ with Chebyshev $S$-polynomials. Therefore the fundamental graph for $k=1$ is $\mathbf{P}_{N}$ with
characteristic polynomial $S_{N}(x)$, and the more general case is covered by a $\gamma$-transformation according to lemma 1.
ii) $\alpha=-\beta= \pm \frac{1}{2}: \hat{c}_{n-1}=0$ for $n \geq 2, \hat{b}_{n-1}=k, k \in \mathbb{N}$, for $n \geq 2 . \hat{c}_{0}=k$. Both cases lead to identical graphs which look like the ones from case i) but now the vertex no. 1 has a $k$-self-loop. The characteristic polynomial is in both cases $\hat{P}_{n}^{\left( \pm \frac{1}{2}, \mp \frac{1}{2}\right)}(k ; x)=k^{n}\left(S_{n}(x / k)-S_{n-1}(x / k)\right)$, with correlated signs. Therefore, the fundamental graph with $k=1$ looks like $P_{N}$ but with a self-loop at vertex no. 1 .
The characteristic polynomial for the fundamental $k=1$ graph in case ii) has a recurrence like the $S$-polynomials, but with the inputs 1 and $x-1$ for $n=0$ and $n=1$, respectively. Therefore these are the polynomials $S_{n}(x)-S_{n-1}(x)$. Their coeffcient table is found under A130777.
b) Laguerre-Sonin(e) polynomials: $\left\{\tilde{L}_{n}^{(\alpha}(x)\right\}, \alpha>-1$ (for orthogonality on $[0,+\infty)$ with a certain known weight function $\left.w^{(\alpha)}(x)\right)$ :
The recurrence for the monic polynomials is, for $n \geq 1$,

$$
\begin{align*}
& \tilde{L}_{n}^{(\alpha)}(x)=(x-(2 n-1+\alpha)) \tilde{L}_{n-1}^{(\alpha)}(x)+(n-1+\alpha)(n-1) \tilde{L}_{n-2}^{(\alpha)}(x), \\
& \tilde{L}_{-1}^{(\alpha)}(x)=0, \quad \tilde{L}_{0}^{(\alpha)}(x)=1 . \tag{11}
\end{align*}
$$

Here the analysis is much simpler than above. $\hat{c}_{n-1}=\gamma(2 n-1+\alpha), n \geq 1$, has to become a positive integer, and $\hat{b}_{n-1}^{2}=\gamma^{2}(n-1)(n-1-\alpha)$ has to become a squared integer. This only works for $\alpha=0$, the usual Laguerre polynomials, and $\gamma=k \in \mathbb{N}$. Therefore the following proposition holds.

## Proposition 6: Jacobi graphs for the Laguerre-Sonin(e) OPS

Graphs are only possible for $\alpha=0, \hat{c}_{n-1}=k(2 n-1)$, and $\hat{b}_{n-1}=k(n-1)$, for $n \geq 1$. The characteristic polynomials are $\hat{P}(k ; x)=k^{n} \tilde{L}_{n}^{(0)}\left(\frac{x}{k}\right)$. The fundamental graph is $\mathbf{L}_{N}$ with $k=1$, and characteristic polynomial $\tilde{L}_{N}(x)$, the usual ( $\alpha=0$ ) monic Laguerre polynomial.
The example $L_{4}$ is shown in Figure 3.


Fig. 3: Laguerre Graph $L_{4}$
In the remaining c) Hermite class of classical orthogonal polynomials no non-trivial graph candidates $\mathbf{J}_{N}$ can be found because the recurrence relation for the monic polynomials is

$$
\begin{align*}
& \tilde{H}_{n}(x)=x \tilde{H}_{n-1}(x)-\frac{n-1}{2} \tilde{H}_{n-2}(x), \\
& \tilde{H}_{-1}(x)=0, \tilde{H}_{0}(x)=1 \tag{12}
\end{align*}
$$

Therefore $\hat{b}_{n-1}^{2}=\gamma^{2} \frac{n-1}{2}$ can become a squared positive integer for every $n \geq 2$ but only if $\gamma$ is taken as $n$-dependent. For example, for $n=2$ it would be $\sqrt{2} k$, with $k \in \mathbb{N}$, and for $n=3$ it would have to be chosen as $k$, etc. This $n$ dependence of $\gamma$ is not allowed in lemma 1 . The only trivial possibilities are the graphs for $N=1$ with $\hat{c}_{0}=0$ and characteristic polynomial $x$, and $N=2$ with $\hat{c}_{0}=0$ and $\hat{b}_{1}=k \in \mathbb{N}$ and characteristic polynomial $\hat{H}_{2}(x)=(\sqrt{2} k)^{2} \tilde{H}_{2}\left(\frac{x}{\sqrt{2} k}\right)$. This is a graph like $\mathbf{P}_{2}$ with $k$-multi-lines. The fundamental graph with $k=1$ is $\mathbf{P}_{2}$. For each $N \geq 3$ one cannot find only one $\gamma$.

This ends the discussion of classical $O P S$ which can function as characteristic polynomials for adjacency matrices of graphs. Of course, non-classical OPS can also be good candidates. For example, take the $\mathbf{P}_{N}$ graph with a self-loop for each of its vertices. This means that all three diagonals of the Jacobi matrix are composed of 1s. This leads to the characteristic polynomials whose coefficient table is given in $\underline{\text { A104562 }}$ for $N \geq 1$.
The array for the total number of return trips $w(N, L)$ for the (open) $\mathbf{P}_{N}$ graphs, with characteristic Chebyshev $S$-polynomials, can be fond under A198632 which is the corresponding number triangle $a(K, N)=w(N, 2(K-N+2)), K+1 \geq n \geq 1$. The o.g.f. $G S_{N}(z)$ for $w(N, L)$ is

$$
\begin{equation*}
G S_{N}(z)=\left.y \frac{S_{N}^{\prime}(y)}{S_{N}(y)}\right|_{y=\frac{1}{z}} \tag{13}
\end{equation*}
$$

and it can be rewritten, with the help of the identity

$$
\begin{equation*}
2 S_{N}^{\prime}(y)=\frac{1}{\left(1-\left(\frac{y}{2}\right)^{2}\right)}\left(\frac{y}{2} S_{N}(y)-(N+1) T_{N+1}\left(\frac{y}{2}\right)\right) \tag{14}
\end{equation*}
$$

and the Binet-de Moivre identities for the Chebyshev $S$ - and $T$-polynomials as (see [3], p. 245, eqs. (3.8a) to (3.8d), where in eq. (3.8d) tanh should be replaced by coth)

$$
\begin{equation*}
G S_{N}(z)=\frac{1}{\sqrt{\left.1-(2 z)^{2}\right)}}\left\{(N+1) \operatorname{coth}\left((N+1) \log \frac{2 z}{1-\sqrt{1-(2 z)^{2}}}\right)-\frac{1}{\sqrt{1-(2 z)^{2}}}\right\} \tag{15}
\end{equation*}
$$

It satisfies the Riccati equation (compare [3], p. 247, Theorem 11, eq. (3.10))

$$
\begin{equation*}
\left(1-(2 z)^{2}\right) z G S_{N}^{\prime}(z)-\left(2+(2 z)^{2}\right) G S_{N}(z)+\left(1-(2 z)^{2}\right)\left(G S_{N}(z)\right)^{2}+N(N+2)=0 \tag{16}
\end{equation*}
$$

For the cycle graphs $\mathbf{C}_{N}$ the number of return trips for any of the $N$ vertices $\mathrm{w}(N, L)$ is found under A199571, which is the number triangle version $a(K, L)=\mathrm{w}(N, K-N+1), K \geq 0, n=1, \ldots, K+1$. For the open Laguerre graphs $L_{N}$, which are not vertex-transitive, one computes the average number of round trips from the ordinary Laguerre polynomials, using the well known differential-difference identity $x L_{N}^{\prime}(x)=N\left(L_{N}(x)-L_{N-1}(x)\right)$, written for the monic ploynomials $\tilde{L}_{N}(x)=N!(-1)^{N} L_{N}(x)$,

$$
\begin{equation*}
x \tilde{L}_{N}^{\prime}(x)=N\left(\tilde{L}_{N}+N \tilde{L}_{N-1}\right) \tag{17}
\end{equation*}
$$

This immediately leads, from proposition 3, to the following proposition.
Proposition 7: O.g.f. for average round trips for open Laguerre graphs $\mathbf{L}_{\mathbf{N}}$

$$
\begin{align*}
G L_{N}(z) & =1+N \frac{\tilde{L}_{N-1}\left(\frac{1}{z}\right)}{\tilde{L}_{N}\left(\frac{1}{z}\right)}  \tag{18}\\
& =\frac{\sum_{k=0}^{N-1}(-1)^{k}\left(1-\frac{k}{N}\right)\binom{N}{N-k} \frac{N!}{(N-k)!} z^{k}}{\sum_{k=0}^{N}(-1)^{k}\left({ }_{N-k}^{N}\right) \frac{N!}{(N-k)!} z^{k}} . \tag{19}
\end{align*}
$$

The last equation used the explicit form of the Laguerre polynomials. See also [3], Note 6, p. 244, and Corollary 19 with $\alpha=0$.
This o.g.f. is not an elementary function, it is

$$
\begin{equation*}
G L_{N}(z)=1-\frac{{ }_{1} F_{1}(-N+1,1 ; 1 / z)}{{ }_{1} F_{1}(-N, 1 ; 1 / z)} \tag{20}
\end{equation*}
$$

It satisfies (see [3], Theorem 21, p. 251) the following Riccati equation.

$$
\begin{equation*}
z^{2} \frac{d}{d z} G L_{N}(z)=N z\left(G L_{N}(z)\right)^{2}-G L_{N}(z)+1 \tag{21}
\end{equation*}
$$

Example 2: O.g.f. for average number of round trips on $\mathbf{L}_{\mathbf{4}}$

$$
\begin{equation*}
G L_{4}(z)=\frac{1-12 x+36 x^{2}-24 x^{3}}{1-16 x+72 x^{2}-96 x^{3}+24 x^{4}} . \tag{22}
\end{equation*}
$$

This generates the sequence $[1,4,28,232,2056,18784,174112,1625152,15220288,142777600$, $1340416768,12588825088,118252556800, \ldots]$ found under A199579.
In Table 1 the array of the average round trip numbers $w(N, L)$ for the Laguerre graphs $L_{N}$ computed from these o.g.f. s is given for $N=1, \ldots, 10$ and $L=0, \ldots, 8$. This appears as triangle $a(K, N)=$ $w(N, K-N+1)$ under A201198.
In Table 3 the o.g.f. s $G L_{N}(z)$ are shown for $N=1, \ldots, 9$.
We are here not going into a detailed computation of the general number of walks $w_{N, L}\left(p_{n} \rightarrow p_{m}\right)$. We only mention its o.g.f. $G_{N}\left(p_{n} \rightarrow p_{m} ; z\right)=\sum_{L=0}^{\infty} w_{N, L}\left(p_{n} \rightarrow p_{m}\right) z^{L}=\sum_{L=0}^{\infty}\left(\mathbf{J}^{L}\right)_{n, m} z^{L}=$ $\left[\left(\mathbf{1}_{N}-z \mathbf{J}_{N}\right)^{-1}\right]_{n, m}$. This leads with the resolvent (Green's function) for $\mathbf{J}_{N}$ given by $\mathbf{G}_{N}(x)=$ $\left(\mathbf{A}_{N}(x)\right)^{-1}$, with $\mathbf{A}_{N}(x):=x \mathbf{1}_{N}-\mathbf{J}_{N}$ to

$$
\begin{equation*}
G_{N}\left(p_{n} \rightarrow p_{m} ; z\right)=\frac{1}{z}\left[\mathbf{G}_{N}\left(\frac{1}{z}\right)\right]=\left.x \frac{C_{m, n}\left(\mathbf{A}_{N}(x)\right)}{\operatorname{Det} \mathbf{A}_{N}(x)}\right|_{x=\frac{1}{z}} \tag{23}
\end{equation*}
$$

Here $C_{n, m}(\mathbf{M})$ is the $(n, m)$-cofactor of the matrix $\mathbf{M}$.
Finally, the closed Laguerre graphs $\mathbf{L} \mathbf{c}_{N}$, with $\mathbf{L} \mathbf{c}_{1}=\mathbf{L}_{1}$ and $\mathbf{L} \mathbf{c}_{2}$ with adjacency matrix $[[1,2],[2,3]]$ (not the one for $\mathbf{L}_{2}$ which has adjacency matrix $[[1,1],,[1,3]]$ ) and $b_{0}=2$ for symmetry reason, have for $N \geq 3$ the characteristic polynomials of the adjacency matrices

$$
\begin{equation*}
\widetilde{L c}_{N}(x)=\tilde{L}_{N}(x)-4 \tilde{L}_{N-2}^{[1]}(x)-4(N-1)! \tag{24}
\end{equation*}
$$

with the classical monic Laguerre polynomials (parameter $\alpha=0$ ) and their monic first associated ones $\tilde{L}_{n}^{[1]}(x)$, with coefficient triangle given under A199577. For $N=1$ and $N=2 \widetilde{L} c_{N}(x)$ is $z-1$ and $z^{2}-4 z-1$, respectively. This leads to the following o.g.f. for the total number of round trips on $\mathbf{L} \mathbf{c}_{N}$ (note that the average number of round trips will in general be a fraction).

## Proposition 8: O.g.f. for total number of round trips for closed Laguerre graphs

$$
\begin{align*}
G L c_{1}(z) & =G L_{1}(z)=\frac{1}{1-z}  \tag{25}\\
G L c_{2}(z) & =G L_{2}(z)=\frac{1-2 z}{1-4 z-z^{2}}  \tag{26}\\
G L c_{N}(z) & =\left.x \frac{\widetilde{L c}_{N}^{\prime}(x)}{\widetilde{L c_{N}}(x)}\right|_{x=\frac{1}{z}}, N \geq 3 \tag{27}
\end{align*}
$$

This could be rewritten by insering the formula for $\widetilde{L c}_{N}^{\prime}(x)$.
A sketch of the graph $\mathbf{L c} \mathbf{c}_{4}$ is given in Figure 4.


Fig. 4: ClosedLaguerre Graph Lcc $\boldsymbol{c}_{4}$

## Example 3: O.g.f. for total number of round trips on $\mathrm{Lc}_{4}$

$$
\begin{equation*}
G L c_{4}(z)=4 \frac{1-12 x+34 x^{2}-16 x^{3}}{1-16 x+68 x^{2}-64 x^{3}-44 x^{4}} . \tag{28}
\end{equation*}
$$

This generates the sequence $4 *[1,4,30,256,2356,22384,215640,2090176,20315536,197702464, \ldots]$ found as $4 *$ A 201200 . In this case the average number is integer (this happens, e.g., also in the case $N=8$ ).
In Table 2 the array of the total round trip numbers $w c(N, L)$ for these closed Laguerre graphs $\mathbf{L c}_{N}$, computed from these o.g.f. s, is given for $N=1, \ldots, 10$ and $L=0, \ldots, 8$. This appears as triangle $a(K, N)=w(N, K-N+1)$ under A201199.
In Table 4 the o.g.f. s $G L c_{N}(z)=\mathcal{G}_{N}(z)$ are shown for $N=1, \ldots, 9$.
In the limit of large $N$ one finds for the open $\mathbf{P}_{N}$ graphs the o.g.f. of the average number of round trips $G S_{N}(z) / N$ from eq. (15) to become o.g.f. $\frac{1}{\sqrt{\left.1-(2 x)^{2}\right)}}$ which generates the sequence of central binomial numbers interspersed with 0 s, $[1,0,2,0,6,0,20,0,70,0,252,0,924, \ldots$,$] which is A126869 . For the cyclic$ graphs $\mathbf{C}_{N}$ the number of round trips for each vertex approximates for large $N$ also these central binomial numbers numbers, as one derives from the o.g.f. given in A199571.
For the open Laguerre graphs $\mathbf{L}_{N}$ the average number of round trips diverges for $N \rightarrow \infty$. One finds for the scaled o.g.f. $G L_{N}\left(\frac{z}{N}\right)$ from the Riccati equation (21) the o.g.f. for the Catalan numbers $c(z)=$ $\frac{1}{2 z}(1-\sqrt{1-4 z})$. Therefore, $\lim _{N \rightarrow \infty} \frac{w(N, L)}{N^{L}}=C_{L}$, with the Catalan numbers $C_{L}$ given in $\underline{\text { A000108 }}$.

This is an enlarged version of a talk given by the author in 1997 at the "Kombinatorik" meeting at TU Braunschweig, Germany.

## References

[1] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978
[2] P. W. Kasteleyn, Graph Theory and Crystal Physics, pp. 43-110, in Fank Harary (ed.), Graph Theory and Theoretical Physics, Academic Press, 1967
[3] W. Lang, On sums of powers of zeros of polynomials, J. Comp. appl. Math. $\underline{89}$ (1998) 237-256
[4] The On-Line Encyclopedia of Integer Sequences ${ }^{T M}$, published electronically at http://oeis.org. 2010

AMS MSC numbers: 33C45, 05C30, 34A34
OEIS A-numbers: A000108, A049310, A104562, A126869, A130777, A198632, A199571, A199577, A199579, A201198, A201199, A201200.
 graphs $\mathbf{L}_{\mathbf{N}}$

| $\mathbf{N} \backslash \mathbf{L}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8} \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mathbf{2}$ | 1 | 2 | 6 | 20 | 68 | 232 | 792 | 2704 | 9232 |
| $\mathbf{3}$ | 1 | 3 | 15 | 87 | 531 | 3303 | 20691 | 129951 | 816939 |
| $\mathbf{4}$ | 1 | 4 | 28 | 232 | 2056 | 18784 | 174112 | 1625152 | 15220288 |
| $\mathbf{5}$ | 1 | 5 | 45 | 485 | 5645 | 68245 | 841725 | 10495525 | 131661325 |
| $\mathbf{6}$ | 1 | 6 | 66 | 876 | 12636 | 190296 | 2935656 | 45927216 | 724547376 |
| $\mathbf{7}$ | 1 | 7 | 91 | 1435 | 24703 | 445627 | 8259727 | 155635459 | 2962913527 |
| $\mathbf{8}$ | 1 | 8 | 120 | 2192 | 43856 | 922048 | 19964736 | 440311936 | 9826743424 |
| $\mathbf{9}$ | 1 | 9 | 153 | 3177 | 72441 | 1739529 | 43098777 | 1089331497 | 27897922233 |
| $\mathbf{1 0}$ | 1 | 10 | 190 | 4420 | 113140 | 3055240 | 85252600 | 2429880400 | 70250453200 |
| $\mathbf{~}$ |  |  |  |  |  |  |  |  |  |

Table 2: A201199: Array of total number of round trips $w_{N, L}$ for closed Laguerre graphs $\mathbf{L c}_{\mathrm{N}}$

| $\mathbf{N} \backslash \mathbf{L}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8} \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mathbf{2}$ | 2 | 4 | 12 | 40 | 136 | 464 | 1584 | 5408 | 18464 |
| $\mathbf{3}$ | 3 | 9 | 53 | 357 | 2489 | 17509 | 123449 | 870893 | 6144769 |
| $\mathbf{4}$ | 4 | 16 | 120 | 1024 | 9424 | 89536 | 862560 | 8360704 | 81262144 |
| $\mathbf{5}$ | 5 | 25 | 233 | 2545 | 29985 | 367505 | 4599521 | 58216113 | 741355649 |
| $\mathbf{6}$ | 6 | 36 | 404 | 5400 | 78392 | 1188336 | 18460016 | 290899680 | 4623415648 |
| $\mathbf{7}$ | 7 | 49 | 645 | 10213 | 176473 | 3195829 | 59473593 | 1125306973 | 21514466689 |
| $\mathbf{8}$ | 8 | 64 | 968 | 17728 | 355536 | 7493504 | 162671840 | 3597143040 | 80497036736 |
| $\mathbf{9}$ | 9 | 81 | 1385 | 28809 | 657953 | 15826041 | 392792273 | 9945708777 | 255176534209 |
| $\mathbf{1 0}$ | 10 | 100 | 1908 | 44440 | 1138840 | 30790000 | 860218416 | 24549157600 | 710660174944 |
| $\vdots$ |  |  |  |  |  |  |  |  |  |

Table 3: O.g.f $\mathrm{GL}_{\mathrm{N}}(\mathrm{z})$ for average number of round trips on open Laguerre graphs $L_{N}$.


Table 4: O.g.f $\mathcal{G}_{\mathrm{N}}(\mathbf{z})$ for total number of round trips on closed Laguerre graphs $\mathrm{Lc}_{\mathrm{N}}$.

| $\mathbf{N}$ | $\mathcal{G}_{\mathbf{N}}(\mathbf{z})$ |
| :--- | :--- |
| $\mathbf{1}$ | $\frac{1}{1-z}$ |
| $\mathbf{2}$ | $2 \frac{1-2 z}{1-4 z-z^{2}}$ |
| $\mathbf{3}$ | $\frac{3-18 z+14 z^{2}}{1-9 z+14 z^{2}-2 z^{3}}$ |
| 4 | $4 \frac{1-12 z+34 z^{2}-16 z^{3}}{1-16 z+68 z^{2}-64 z^{3}-44 z^{4}}$ |
| 5 | $\frac{5-100 z+588 z^{2}-1080 z^{3}+368 z^{4}}{1-25 z+196 z^{2}-540 z^{3}+368 z^{4}-16 z^{5}}$ |
| 6 | $2 \frac{3-90 z+892 z^{2}-3456 z^{3}+4692 z^{4}-1272 z^{5}}{1-36 z+446 z^{2}-2304 z^{3}+4692 z^{4}-2544 z^{5}-856 z^{6}}$ |
| 7 | $\frac{7-294 z+4390 z^{2}-28842 z^{3}+83208 z^{4}-89712 z^{5}+20448 z^{6}}{1-49 z+878 z^{2}-7210 z^{3}+27736 z^{2}-44856 z^{5}+20448 z^{6}-864 z^{7}}$ |
| 8 | $8 \frac{1-56 z+1173 z^{2}-11640 z^{3}+57130 z^{4}-131280 z^{5}+117576 z^{6}-23328 z^{7}}{1-64 z+1564 z^{2}-18624 z^{3}+114260 z^{4}-350080 z^{5}+470304 z^{6}-186624 z^{7}-32112 z^{8}}$ |
| $\mathbf{9}$ | $\frac{9-648 z+18116 z^{2}-252504 z^{3}+1875000 z^{4}-734560 z^{5}+14022240 z^{6}-10756800 z^{7}+1901376 z^{8}}{1-81 z+2588 z^{2}-42084 z^{3}+375000 z^{4}-1835640 z^{5}+4674080 z^{6}-5378400 z^{7}+1901376 z^{8}-85824 z^{9}}$ |
| $\vdots$ |  |


[^0]:    ${ }^{1}$ wolfdieter.lang@kit.edu, http://www-itp.particle.uni-karlsruhe.de/~wl

