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A215037: Application of the partial summation formula to some sums

over cubes of Fibonacci numbers

Wolfdieter L a n g 1

The partial summation formula is, e.g. [1], eq. (1.11), p. 8,

N
∑

k=0

ak bk = AN bN −

N−1
∑

k=0

Ak (bk+1 − bk),with Ak :=

k
∑

j=0

aj , (1)

identically in {ak}
N
0 and {bk}

N
0 , for N ∈ N0 (as usual, an undefined sum is put to 0). The proof is

simple: just collect terms proportional to bk, for k=0,...,N, use A(k) − A(k−1) = ak, and compare both
sides of the assertion.

This formula, which looks similar to the partial integration formula (hence its name, which should not
be confused with ‘partial sum’ even though partial sums are used), can be used to derive relations among
finite sums over products of sequences, provided the sum Ak with less factors is known. The lower
summation index is here 0, but one could use another offset. As a simple first example we (re)derive
the well known formula on the sum over the third powers of Fibonacci numbers [4], A000045, given in
A005968. See also [3], eq. 38., p. 89 (attributed to Rao, 1953, [5], note a misprint in the last of the set
of equations in the middle of p. 682: it should be .. + 2, not ... − 2. Use this equation with Un = Fn+1

and the second of the starting identities to arrive at the Koshy eq. 38.).

Example 1: ak = F 2
k , bk = Fk. Using the known sum Ak =

∑k
j=0 F 2

j = Fk+1 Fk (This can be proved
directly using the F recurrence and a shift of the summation index. See A001654 and [6], Nr. 45, p. 179)
one obtains

N
∑

k=0

F 3
k = FN+1 F 2

N −

N−1
∑

k=0

Fk+1 Fk Fk−1 , (2)

where the F recurrence has been used for bk+1 − bk. For the sum on the r.h.s. we use, after adding
and subtracting the k = N term, the well known Cassini identity Fk+1 Fk−1 = F 2

k + (−1)k (this is
obtained by the determinant product formula applied to powers of the Fibonacci matrix with known
determinant; see, e.g., [3], eq. (5.4), p. 74 and p. 363 ). In this way one recovers the negative of the
sum on the l.h.s. and the remaining terms lead to the result, after also the known alternating sum
∑N

k=0 (−1)k Fk = (−1)N (FN−1 + (−1)N−1) = (−1)N A008346(N − 1) is used.

F (0,0,0)(N) :=
N

∑

k=0

F 3
k =

1

2

(

F 2
N+1 FN + (−1)N−1 (FN−1 + (−1)N−1)

)

. (3)

In this case the partial summation formula first led to eq. (2), a relation between two sums, namely, after
a shift in the summation index,

N
∑

k=0

Fk+2 Fk+1 Fk = −

N
∑

k=0

F 3
k + FN+3 FN+1 FN . (4)
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With the above result this sum becomes (first for N − 1, then rewritten for N)

1

2
F (2,1,0)(N) :=

N
∑

k=0

1

2
Fk+2 Fk+1 Fk =

1

4

(

F 2
N+2 FN+1 − (−1)N (FN + (−1)N )

)

. (5)

This is the sum over the fibonomial coefficients fibonomial(k + 2, 3) (see A001655(k − 1), with
A001655(−1) := 0). For this sum see A215037(N − 1), with A215037(−1) := 0.

Using the F -recurrence in twice this sum one obtains an expression for the sum of the two sums
N

∑

k=0

F 2
k+1 Fk +

N
∑

k=0

Fk+1 F 2
k . On the other hand, if the F -recurrence is used in the second sum one obtains

N
∑

k=0

Fk+1 F 2
k =

N
∑

k=0

F 3
k +

N−1
∑

k=0

F 2
k+1 Fk, after a shift of the summation index. This leads to the difference

of the two sums

N
∑

k=0

F 2
k+1 Fk −

N
∑

k=0

Fk+1 F 2
k = −

N
∑

k=0

F 3
k + F 2

N+1 FN . If the sum over the F -cubes from

eq. (3) is inserted, and the result for the sum of the two sums is also used, one finds the following
expressions for both sums separately, using the F−recurrence, implying also F 2

N+1 − F 2
N = FN+2 FN−1

([6], eq. (12), p. 176, or [3], p. 90, eq. 56. with k = 1), and the Cassini identity from above.

F (1,0,0)(N) :=

N
∑

k=0

Fk+1 F 2
k =

1

2
(F 3

N+1 − (−1)N FN+1) =
1

2
FN+2 FN+1 FN , (6)

F (1,1,0)(N) :=

N
∑

k=0

F 2
k+1 Fk =

1

2

(

FN+2 F 2
N+1 − (−1)N (FN + (−1)N )

)

. (7)

The sum F (1,0,0)(N) = fibonomial(N +2, 3) is found as A001655(N −1), N ≥ 1, with A001655(-1):=0.
The sum F (1,1,0)(N) is found as A215038(N).

Using both results as input one can immediately obtain by induction on m ≥ 0., via the F−recurrence,
the expressions for the following m−family of sums.

F (m,1,0)(N) ≡ s(m;N) :=
N

∑

k=0

Fk+m Fk+1 Fk =
1

2

(

FN+m FN+2 FN+1 − (−1)N Fm (FN + (−1)N )
)

.

(8)
Similarly, with the expression for the sum over the F -cubes, eq. (3) and eq. (6) as input one can prove
by induction on m ≥ 0

F (m,0,0)(N) ≡ t(m;N) :=
N

∑

k=0

Fk+m F 2
k =

1

2

(

FN+1 FN FN+m+1 − (−1)N Fm−1 (FN−1 + (−1)N−1)
)

.

(9)
Here F−1 = 1 is used (from the F -recurrence).

The corresponding ordinary generating functions (o.g.f.s) G(a,b,c)(x) for these partial sum sequences
{F (a,b,c)(N)}∞N=0 are given immediately by those for the sequences of the summands by multipli-

cation with
1

1 − x
. Therefore (see for the first four cases A056570, A001655(k − 1), A066258,
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A066259,respectively),

G(0,0,0)(x) =
x (1 − 2x − x2)

(1 + x − x2) (1 − 4x − x2) (1 − x)
, (10)

1

2
G(2,1,0)(x) =

x

(1 + x − x2) (1 − 4x − x2) (1 − x)
, (11)

G(1,0,0)(x) =
x

(1 + x − x2) (1 − 4x − x2)
, (12)

G(1,1,0)(x) =
x (1 + x)

(1 + x − x2) (1 − 4x − x2) (1 − x)
, (13)

G(m,1,0)(x) =
x (Fm+1 + e(m)x)

(1 + x − x2) (1 − 4x − x2) (1 − x)
, (14)

with e(0) = −1, e(1) = +1, e(2) = 0, and e(m) = 1 for m ≥ 3,

G(m,0,0)(x) =
x (Fm+1 − Lm x − ε(m)x2)

(1 + x − x2) (1 − 4x − x2) (1 − x)
(15)

with ε(0) = 1, ε(1) = 0, and ε(m) = 1 for m ≥ 2.

(16)

L are the Lucas numbers A000032, and G(0,1,0)(x) = G(1,0,0)(x).

Of course one could go on to fourth and higher powers of Fibonacci numbers and apply the partial
summation formula.

For alternating sums of powers of Fibonacci numbers with various indices the partial summation formula
leads also to interesting relations and explicit forms. As an example for the latter we consider the sum
N

∑

k=0

(−1)k F 3
k . This appears as A119284, and an explicit formula and the o.g.f. is shown there. However,

if we apply formula eq. (1) with ak = (−1)k Fk and bk = F 2
k it turns out that this sum appears also on

the r.h.s. (hence drops out) and one obtains an explicit formula for the sum

N
∑

k=0

(−1)k Fk+1 F 2
k which is

presently not yet in [4]. This is the content of example 2.

Example 2: ak = (−1)k Fk and bk = F 2
k

Falt(1,0,0) :=

N
∑

k=0

(−1)k Fk+1 F 2
k =

1

2

(

1 − FN+1 + (−1)N FN+2 F 2
N

)

. (17)

Proof: Starting with bk+1 − bk = Fk+2 Fk−1 (a standard formula, e.g., [6], eq. (12), p. 176) , the

F−recurrence for Fk+2 and the known sum
k

∑

k=0

(−1)j Fj = (−1)k Fk−1 − 1, one has

N
∑

k=0

(−1)k F 3
k = ((−1)N FN−1 − 1)F 2

N +

N−1
∑

k=0

(−1)k−1 F 3
k−1 − 2

N−1
∑

k=0

(−1)k Fk F 2
k−1 +

N−1
∑

k=0

Fk+2 Fk−1 .

(18)

The non-alternating sum is known:

N−1
∑

k=0

Fk+2 Fk−1 = 1 +

N−2
∑

k=0

Fk+3 Fk = 1 + F2 N−3 − 1 + 2FN−1 FN−2.

See also A080097, and a comment on A080144 for such sums. The other sum reproduces the sum on the
l.h.s. after separating the k = 0 term, shifting the index and adding and subtracting the missing terms
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for k = N − 1 and k = N . This leads to

0 = (−1)N FN−1 F 2
N − F 2

N − (−1)N−1 F 3
N−1 − (−1)N F 3

N + 2
N−2
∑

k=0

(−1)k Fk+1 F 2
k (19)

+ F2 (N−2)+1 − 1 + 2FN−1 FN−2 .

With F2 (N−2)+1 = F 2
N−1 + F 2

N−2 (see e.g., , [6], eq. (11), p. 176) and replacing (FN−1 + FN−2)
2 = F 2

N

this leads to

− 2

N−2
∑

k=0

(−1)k Fk+1 F 2
k = −1 + (−1)N

(

2FN F 2
N−1 − 2FN+1 F 2

N + FN−1 F 2
N + F 3

N−1 − F 3
N

)

. (20)

One can then show that the terms multiplying (−1)N boil down to −(F 3
N + FN+2 FN+1 FN−2). This can

be rewritten as −(2 fibonomial(N + 2) − 2 fibonomial(N + 1) − F 2
N+1 FN−1) , and 2 fibonomial(N +

2) − 2 fibonomial(N +1) = 2FN+1 F 2
N . Applying once more the Cassini identity finally ends the proof.

The o.g.f. of {Falt(1,0,0)(N)}∞N=0 is obtained from the one of the summand, given in A066258, after

multiplication with
1

1 − x
.

Galt(1,0,0)(x) =
−x (1 + x)

(1 + 4x − x2) (1 − x − x2) (1 − x)
. (21)

Applying the partial summation formula on Falt(1,0,0), which is now known, results in the following
identity.

Example 3: ak = (−1)k Fk+1 and bk = F 2
k

Falt(3,1,0) :=

N
∑

k=0

(−1)k Fk+3 Fk+1 Fk =
1

2

(

1 − FN+3 + (−1)N F 2
N+2 FN+1

)

. (22)

Proof: With bk+1 − bk = Fk+2 Fk+1 and A(k) =
∑k

j=0 (−1)j Fj+1 = (−1)k Fk − 1 one finds

Falt(1,0,0)(N) =

N
∑

k=0

(−1)k Fk+1 F 2
k = ((−1)N FN − 1)F 2

N +

N−2
∑

k=0

(−1)k Fk+3 Fk+1 Fk + 1

+
N−2
∑

k=0

(−1)k Fk+3 Fk . (23)

The non-alternating sum is known (see the comment on A080144 for such sums):
∑N−2

k=0 (−1)k Fk+3 Fk =
F2 (N−2)+1 − 1 + FN−1 FN−2. Replacing F2 (N−2)+1 (see above, [6], p. 176, eq. (11)), in-

serting the known result for Falt(1,0,0)(N) from eq. (16) leads finally to the desired result.

The o.g.f. of {Falt(3,1,0)(N)}∞N=0 is readily obtained from the one of the summand, using the
F−recurrence for FN+3. See A065563 and A066259.

Galt(3,1,0)(x) =
−x (3 − x)

(1 + 4x − x2) (1 − x − x2) (1 − x)
. (24)
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Another alternating sum of interest is Falt(1,1,0)(N) given by

Falt(1,1,0)(N) :=

N
∑

k=0

(−1)k F 2
k+1 Fk = (−1)N fibonomial(N + 2) , (25)

with o.g.f. (compare this with eq. (20))

Galt(1,1,0)(x) =
−x (1 − x)

(1 + 4x − x2) (1 − x − x2) (1 − x)
. (26)

For the unsigned summand see A066259. We have not found a way to derive eq. (24) directly from some
partial summation formula. Therefore this will be proved here via some detour using as input the known
alternating sum Falt0,0,0(N) for the cubes.

The application of the formula eq. (1) with ak = (−1)k Fk+2 and bk = Fk+1 Fk leads to the analog of a
the relation eq. (4) for alternating sums.

Example 4: ak = (−1)k Fk+2 and bk = Fk+1 Fk, implying bk+1 − bk = F 2
k+1.

Falt(2,1,0)(N) :=

N
∑

k=0

(−1)k Fk+2 Fk+1 Fk =

N
∑

k=0

(−1)k F 3
k + (−1)N F 2

N+1 FN . (27)

Using the F -recurrence for Fk+2, inserting the result for Falt(1,0,0)(N) from eq. (16), yields the relation

Falt(1,1,0)(N) =
N

∑

k=0

(−1)k F 3
k +

1

2

(

FN−1 − 1 + (−1)N FN+3 NN FN−1

)

. (28)

Up to now no expression for Falt(0,0,0)(N) =

N
∑

k=0

(−1)k F 3
k has been found this way. Of course one could

use the known result derivable from the recurrence of the cubic powers of Fibonacci numbers (e.g., [2],
exercise 6.58, p. 315 with the solution on p. 556) F 3

n+1 − 4F 3
n − F 3

n−1 = 3 (−1)n Fn (this follows from
the o.g.f. for the cubes of Fibonacci numbers, obtained via the Binet-de Moivre formula, and the result
F3 n = F 3

n+1 + F 3
n − F 3

n−1 (see [5], p. 680, eq. III, with Un = Fn+1). This produces after summation

Falt(0,0,0)(N) =
1

4

(

2 − 3FN+2 − (−1)N (F 3
N+1 − F 3

N )
)

. (29)

Using F 3
N =

1

4

(

F3 N − 3 (−1)N FN

)

(see also A056570) this can be rewritten as

Falt(0,0,0)(N) =
1

10

(

5 − 6FN+2 + (−1)N F3 N+1

)

. (30)

See A005968. The o.g.f. , obtained from the one of the alternating cubic powers of the Fibonacci numbers
(see {(−1)n A056570(n)}), is

Galt(0,0,0)(x) =
−x (1 + 2x − x2)

(1 + 4x − x2) (1 − x − x2) (1 − x)
. (31)

With this information one finds from eq. (27), using the F -recurrence and the Cassini identity

Falt(1,1,0)(N) :=
N

∑

k=0

(−1)k F 2
k+1 Fk =

1

10

(

4FN − FN+1 + (−1)N (F3 N+1 + 5FN+2 F 2
N )

)

. (32)
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With F3 N+1 =
1

2

(

F3 (N+1) − F3 N

)

(see A033887 with the o.g.f. from A001076), and 5Fn+2 F 2
n =

1

2

(

F3 (N+1) − F3 N

)

+ (−1)N FN+2 − 5F 3
N , from F3 n = 5F 3

n + 3 (−1)n Fn, [3], p. 89, eq. 46. (attributed

to Holton 1965), and again the Cassini identity, this becomes

Falt(1,1,0)(N) :=
N

∑

k=0

(−1)k F 2
k+1 Fk =

1

10

(

−2FN+1 + (−1)N F3 (N+1)

)

. (33)

The bracket is, using again the F3 n formula from above, with n → N +1, and F 3
N+1 = FN+2 FN+1 FN +

(−1)N FN+1 (this is eq. 32. of [3], p. 89, but with a sign misprint corrected, see A065563) rewritten as
10 fibonomial(N + 2) + 2 (−1)N FN+1. Falt(1,1,0)(N) is now seen to coincide indeed with the mentioned
result given in eq. (24).
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