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Note on a Recurrence for Approximation Sequences of p-adic Square
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Abstract

A recurrence for the two standard approximation sequences of the p-adic square root
√
−b is derived

for those integers of b with Legendre symbol
(

−b
p

)
= +1.

In the context of algebraic congruences to prime-power moduli a standard theorem (see e.g., Nagell
[2], Theorem 50, p. 87) states that if a degree m polynomial f(x) over the integers which is primitive
(has gcd of the coefficients equal to 1) and has a simple root x1 modulo a prime p, f(x1) ≡ 0 (mod p),
then the congruence f(x) = 0 (mod pn) has exactly one solution modulo pn, xn say, which is congruent
to x1 modulo p for every n ∈ N. The recursive proof adapts Newton’s [5] method to modular analysis.
In the p−adic setting it is also known as Hensel-lifting, an application of Hensel’s lemma [1, 3]. Here we
consider f(x) = x2 + b with non-vanishing integer b. This note originated in a solution of the special
exercise 1.8, on p. 33, of [6] (or exercise 5 ii), p. 54, of [1]). The general case will be treated by the
following proposition.

Proposition: Recurrence for p-adic ±
√
−b approximation sequences

For x
(i)
n = x

(i)
n (p, b), the solution of the congruence

x (i) 2
n + b ≡ 0 (mod pn), for n = {2 , 3 , ...}, (1)

with an odd prime p and b ∈ Z \ {0}, the following recurrence holds. The notation modp(k, p) (like
in MAPLE [4]) is used to pick the representative of the residue class of k modulo p from the complete
residue system CRS0(p) = {0, 1, ..., p− 1}.

x (i)
n = modp

(
x
(i)
n−1 + zi ((x

(i)
n−1 )2 + b), pn

)
for i = 1 , 2 and n ≥ 2 , with input x

(i)
1 = xi , (2)

and the two simple roots xi of f(x) ≡ x2 + b (mod p), for b with Legendre symbol
(
−b
p

)
= +1, and

zi = zi(p, xi) = modp
(
−(2 xi)

p−2 , p
)
. (3)

Proof: The following three sequences P
(i)
n , K

(i)
n and L

(i)
n will be needed (they always depend on p and

b):
x(i)n = xi + P (i)

n p , (4)

with an odd prime p.
x(i) 2n + b = K(i)

n pn . (5)

Like in the proof of Nagell’s Theorem 50 [2] (or in Hensel-lifting) one uses also

x(i)n = x
(i)
n−1 + L

(i)
n−1 p

n, for n = 2, 3, ... . (6)

The aim is to find L
(i)
n−1 , i.e., a recurrence formula which produces the numbers x

(i)
n = x

(i)
n (p, b) lying

in CRS0(p
n) = {0, 1 ... pn − 1}. This sequence {x(i)n }∞n=0 with x

(i)
0 := 0 and x

(i)
1 := xi (one of the two
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simple zeros modulo p) is known as standard sequence representing a p-adic integer from Zp (the set of
the p-adic integers).

See e.g., Frey [1] III, §4, for the definition of Zp as an equivalence class of sequences {sn}∞0 with sn ∈ Z(p),
the set of rational numbers (in lowest terms) which have no factor p at all (e.g., 0), or p does not
divide the denominator which is taken as a positive integer. Furthermore, sn+1 − sn = Lp,n with

Lp,n ∈ {L ∈ Q | |L|p ≤ 1
pn }, with the p-adic valuation |L|p :=

1

pwp(L)
, where wp(L) is for non-

vanishing rational L the integer exponent ap of p in the factorization L = ε
∏

paii (ε = +1 or −1). If
there is no factor p in the numerator or denominator of L then wp(L) = 0, and one puts wp(0) = ∞.
An equivalence relation between such sequences is defined by {sn} ∼ {s′n} iff sn ≡ s′n mod (Z(p) p

n) .

This notation stands for sn − s′n = rp,n with rp,n ∈ {y · pn | y ∈ Z(p)} = {r ∈ Q | |r|p ≤ 1
pn }. (In

[1] |s|p is called ϕp(s), and our powers of p are n, not n + 1.)

From eq. (4) with P
(i)
1 = 0 and eq. (5) we have, for n ≥ 2,

K(i)
n =

x
(i) 2
n + b

pn
=

K
(i)
1 + 2xi P

(i)
n + pP

(i) 2
n

pn−1
∈ N0 . (7)

For n = 1 this is trivial because P
(i)
1 = 0. A special rôle plays K

(i)
1 =

x2i + b

p
, with the zeros xi. Eq.

(7) determines K
(i)
n , for n ≥ 2, in terms of xi and P

(i)
n (and b, p).

The digits of the p-adic integer are related to

L
(i)
n−1 =

x
(i)
n − x

(i)
n−1

pn−1
, for integer n ≥ 2. (8)

Namely, the coefficient of pn in the p-adic expansion is L
(i)
n , n ≥ 1, starting with L

(i)
0 := xi. Now eq.

(6) is used in computing K
(i)
n pn = x

(i) 2
n + b. This yields K

(i)
n−1 p

n−1 + 2x
(i)
n−1 L

(i)
n−1 p

n−1 + L
(i) 2
n−1 p

n pn−2.

After elimination of x
(i)
n−1 with eq. (4) one has

K(i)
n pn = pn−1

(
2xi L

(i)
n−1 + K

(i)
n−1

)
+ pn

(
pn−2 L

(i) 2
n−1 + 2P

(i)
n−1 L

(i)
n−1

)
. (9)

Because an overall factor pn has to appear also on the r.h.s. one chooses

L
(i)
n−1 = ziK

(i)
n−1 , (10)

where the n independent number zi, for i = 1, 2 is determined by

2xi zi + 1 ≡ 0 (mod p) . (11)

This is a linear congruence, and because gcd(2xi, p) = gcd(xi, p) = 1, the solution is unique, and by
Fermat’s little theorem given by (see e.g.,Nagell, Theorem 38, pp. 76-77)

zi ≡ −(2xi)
p−2 (mod p) . (12)

(One might bother about this special choice of L
(i)
n−1, but the general requirement would be 2xi L

(i)
n−1 +

K
(i)
n−1 = 0 (mod p) with the unique solution L

(i)
n−1 ≡ −(2xi)

p−2K
(i)
n−1 (mod p) which has just been found.)

This now becomes a recurrence for K
(i)
n (after dividing by pn) for n ≥ 2 with input K

(i)
1 :

K(i)
n = K

(i)
n−1

[
1 + 2xi zi

p
+ z2i

(
K

(i)
1 + 2xi P

(i)
n−1 + pP

(i) 2
n−1

)
+ 2 zi P

(i)
n−1

]
. (13)
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Due to eq. (7) this could be converted to an equation involving only the P
(i)
n and P

(i)
n−1 (and p, xi, zi, K

(i)
1 ).

But this is not of interest here.

The proposition follows now from eq. (6) after the choice of L
(i)
n−1 from eqs. (10) and (11) which was

valid modulo p:

x(i)n = x
(i)
n−1 + ziK

(i)
n−1 p

n−1 (mod pn) . (14)

Inserting K
(i)
n−1 p

n−1 from eq. (7) (with n→ n− 1) and replacing K
(i)
1 leads to

x(i)n = x
(i)
n−1 + p zi

(
x2i + b

p
+ 2xi

x̂
(i)
n−1
p

+
x̂
(i) 2
n−1
p

)
(mod pn) , (15)

where we have used pP
(i)
n−1 = x̂

(i)
n−1 = x

(i)
n−1 − xi. The second term on the r.h.s. simplifies after

cancellation of the xi and x
(i)
n−1 xi terms to zi (x

(i) 2
n−1 + b).

Because we look for x
(i)
n ∈ CRS0(p

n) = {0, 1, ... pn − 1} we use the modp(a, pn) notation explained
in the proposition (replacing (mod pn)). This then produces the asserted equation of the proposition.

From Nagel’s [2] proof of his Theorem 50, pp. 86 - 87, one would obtain the recurrence

x (i)
n = modp

(
x
(i)
n−1 + (−2 (x

(i)
n−1 )p−2 ) ((x

(i)
n−1 )2 + b), pn

)
. (16)

for i = 1 , 2 and n ≥ 2 , with input x
(i)
1 = xi .

The difference to the recurrence derived here is that the zi of eq. (3) which needs besides p only the

input xi is in this case replaced by a similar quantity which used x
(i)
n−1.

The data p, b, x1, x2, z1, z2 given in the Table, for p = 3, 5, ..., 31 refers to f(x) = x2 + b ≡ 0 (mod p)

with b > 0 and Legendre symbol

(
−b
p

)
= +1, and with b < 0 and Legendre symbol

(
b

p

)
= +1.

Because of (mod p) the inputs x1 and x2, and thus also z1 and z2, are the same for corresponding positive
or negative b. The different sequences for n ≥ 2 arise from the b appearance in the recurrence under
(mod pn).

Some examples: p = 5: b = 1, x1 = 2, z1 = 1 produce the standard sequence {x(1)n }∞0 (where a leading
0 for n = 0 has been added) [0, 2, 7, 57, 182, 2057, 14557, 45807, 280182, 280182, ...] which is A048898.
b = 1, x3 = 2, z1 = 2 yields [0, 3, 18, 68, 443, 1068, 1068, 32318, 110443, 1672943, ...] which is A048899.
b = 4, x1 = 2, z1 = 2 yields [0, 1, 11, 11, 261, 2136, 2136, 64636, 220886, 1392761, ...] which is A268922 and
b = 4, x2 = 4, z2 = 3 yields [0, 4, 14, 114, 364, 989, 13489, 13489, 169739, 560364, ...] which is A269590.

The corresponding digit sequences {L(i)
n }∞0 from eq. (8) and L

(i)
0 = xi are given in A210850, A210851,

A269591, A269592, respectively. The {K(i)
n }∞0 of eq. (5) sequences are found under A210848, A210849,

A269593 , A269594, respectively.

The seqeunces for p = 3, b = 2, with x1 = 1, z1 = 1 and x1 = 2, z2 = 2 are A268924, A271223,
A271225, and A271222, A271224, A271226.

Of course, one may also use the recurrence for other members of the residue classes of the con-
sidered b. For example, for p = 5, b = 6 also with x1 = 2 and z1 = 1 one finds
[2, 12, 37, 162, 1412, 10787, 42037, 354537, 1526412, 3479537, ...], the standard sequence for the 5-adic in-
teger

√
−6 (call it +

√
−6) . The other approximation sequence for x2 = 3 and z2 = 4, −

√
−6, is

[3, 13, 88, 463, 1713, 4838, 36088, 36088, 426713, 6286088, ...].

In Maple [4] one can use the package with(padic) and then the two expansion for the p-adic integers
±
√
−b are given, with [evalp(RootOf(x2 + b), p,N)], up to Order pN−1.
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Table: Odd primes, radicands −b , zeros x1, x2 and numbers z1, z2

Prime p b b x1 x2 z1 z2 Prime p b b x1 x2 z1 z2

3 2 −1 1 2 1 2 23 5 −18 8 15 10 13
5 1 −4 2 3 1 4 7 −16 4 19 20 3

4 −1 1 4 2 3 10 −13 6 17 21 2
7 3 −4 2 5 5 2 11 −12 9 14 14 9

5 −2 3 4 1 6 14 −9 3 20 19 4
6 −1 1 6 3 4 15 −8 10 13 8 15

11 2 −9 3 8 9 2 17 −6 11 12 1 22
6 −5 4 7 4 7 19 −4 2 21 17 6
7 −4 2 9 8 3 20 −3 7 16 18 5
8 −3 5 6 1 10 21 −2 5 18 16 7
10 −1 1 10 5 6 22 −1 1 22 11 12

13 1 −12 5 8 9 4 29 1 −28 12 17 6 23
3 −10 6 7 1 12 4 −25 5 24 26 3
4 −9 3 10 2 11 5 −24 13 16 10 19
9 −4 2 11 3 10 6 −23 9 20 8 21
10 −3 4 9 8 5 7 −22 14 15 1 28
12 −1 1 12 6 7 9 −20 7 22 2 27

17 1 −16 4 13 2 15 13 −16 4 25 18 11
2 −15 7 10 6 11 16 −13 10 19 13 16
4 −13 8 9 1 16 20 −9 3 26 24 5
8 −9 3 14 14 3 22 −7 6 23 12 17
9 −8 5 12 5 12 23 −6 8 21 9 20
13 −4 2 15 4 13 24 −5 11 18 25 4
15 −2 6 11 7 10 25 −4 2 27 7 22
16 −1 1 16 8 9 28 −1 1 28 14 15

19 2 −17 6 13 11 8 31 3 −28 11 20 7 24
3 −16 4 15 7 12 6 −25 5 26 3 28
8 −11 87 12 4 15 11 −20 12 19 9 22
10 −9 3 16 3 16 12 −19 9 22 12 19
12 −7 8 11 13 6 13 −18 7 24 11 20
13 −6 5 14 17 2 15 −16 4 27 27 4
14 −5 9 10 1 18 17 −14 13 18 25 6
15 −4 2 7 14 5 21 −10 14 17 21 10
18 −1 1 18 9 10 22 −9 3 28 5 26

23 −8 15 16 1 30
24 −7 10 21 17 14
26 −5 6 25 18 13
27 −4 2 29 23 8
29 −2 8 23 29 2
30 −1 1 30 15 16
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