Note on a Recurrence for Approximation Sequences of p-adic Square Roots

Wolfdieter L a n g $^{\rm 1}$

Abstract

A recurrence for the two standard approximation sequences of the p-adic square root $\sqrt{-b}$ is derived for those integers of b with Legendre symbol $\left(\frac{-b}{p}\right) = +1$.

In the context of algebraic congruences to prime-power moduli a standard theorem (see *e.g.*, Nagell [2], Theorem 50, p. 87) states that if a degree m polynomial f(x) over the integers which is primitive (has gcd of the coefficients equal to 1) and has a simple root x_1 modulo a prime p, $f(x_1) \equiv 0 \pmod{p}$, then the congruence $f(x) = 0 \pmod{p^n}$ has exactly one solution modulo p^n , x_n say, which is congruent to x_1 modulo p for every $n \in \mathbb{N}$. The recursive proof adapts Newton's [5] method to modular analysis. In the p-adic setting it is also known as Hensel-lifting, an application of Hensel's lemma [1, 3]. Here we consider $f(x) = x^2 + b$ with non-vanishing integer b. This note originated in a solution of the special exercise 1.8, on p. 33, of [6] (or exercise 5 ii), p. 54, of [1]). The general case will be treated by the following proposition.

Proposition: Recurrence for p-adic $\pm \sqrt{-b}$ approximation sequences For $x_n^{(i)} = x_n^{(i)}(p,b)$, the solution of the congruence

$$x_n^{(i)\,2} + b \equiv 0 \pmod{p^n}, \text{ for } n = \{2, 3, ...\},$$
(1)

with an odd prime p and $b \in \mathbb{Z} \setminus \{0\}$, the following recurrence holds. The notation modp(k, p) (like in MAPLE [4]) is used to pick the representative of the residue class of k modulo p from the complete residue system $CRS_0(p) = \{0, 1, ..., p-1\}$.

$$x_n^{(i)} = modp\left(x_{n-1}^{(i)} + z_i\left((x_{n-1}^{(i)})^2 + b\right), p^n\right) \quad \text{for } i = 1, 2 \text{ and } n \ge 2, \text{ with input } x_1^{(i)} = x_i, \quad (2)$$

and the two simple roots x_i of $f(x) \equiv x^2 + b \pmod{p}$, for b with Legendre symbol $\left(\frac{-b}{p}\right) = +1$, and

$$z_i = z_i(p, x_i) = modp \left(-(2 x_i)^{p-2}, p \right) .$$
(3)

Proof: The following three sequences $P_n^{(i)}$, $K_n^{(i)}$ and $L_n^{(i)}$ will be needed (they always depend on p and b):

$$x_n^{(i)} = x_i + P_n^{(i)} p, (4)$$

with an odd prime p.

$$x_n^{(i)\,2} + b = K_n^{(i)} p^n \,. \tag{5}$$

Like in the proof of Nagell's Theorem 50 [2] (or in Hensel-lifting) one uses also

$$x_n^{(i)} = x_{n-1}^{(i)} + L_{n-1}^{(i)} p^n, \text{ for } n = 2, 3, \dots .$$
(6)

The aim is to find $L_{n-1}^{(i)}$, *i.e.*, a recurrence formula which produces the numbers $x_n^{(i)} = x_n^{(i)}(p,b)$ lying in $CRS_0(p^n) = \{0, 1 \dots p^n - 1\}$. This sequence $\{x_n^{(i)}\}_{n=0}^{\infty}$ with $x_0^{(i)} := 0$ and $x_1^{(i)} := x_i$ (one of the two

¹ wolfdieter.lang@partner.kit.edu, http://www.itp.kit.edu/~wl

simple zeros modulo p) is known as standard sequence representing a p-adic integer from \mathbb{Z}_p (the set of the p-adic integers).

See e.g., Frey [1] III, §4, for the definition of \mathbb{Z}_p as an equivalence class of sequences $\{s_n\}_0^\infty$ with $s_n \in \mathbb{Z}_{(p)}$, the set of rational numbers (in lowest terms) which have no factor p at all (e.g., 0), or p does not divide the denominator which is taken as a positive integer. Furthermore, $s_{n+1} - s_n = L_{p,n}$ with $L_{p,n} \in \{L \in \mathbb{Q} \mid |L|_p \leq \frac{1}{p^n}\}$, with the p-adic valuation $|L|_p := \frac{1}{p^{w_p(L)}}$, where $w_p(L)$ is for nonvanishing rational L the integer exponent a_p of p in the factorization $L = \varepsilon \prod p_i^{a_i}$ ($\varepsilon = +1$ or -1). If there is no factor p in the numerator or denominator of L then $w_p(L) = 0$, and one puts $w_p(0) = \infty$. An equivalence relation between such sequences is defined by $\{s_n\} \sim \{s'_n\}$ iff $s_n \equiv s'_n \mod (\mathbb{Z}_{(p)}p^n)$. This notation stands for $s_n - s'_n = r_{p,n}$ with $r_{p,n} \in \{y \cdot p^n \mid y \in \mathbb{Z}_{(p)}\} = \{r \in \mathbb{Q} \mid |r|_p \leq \frac{1}{p^n}\}$. (In [1] $|s|_p$ is called $\varphi_p(s)$, and our powers of p are n, not n + 1.)

From eq. (4) with $P_1^{(i)} = 0$ and eq. (5) we have, for $n \ge 2$,

$$K_n^{(i)} = \frac{x_n^{(i)\,2} + b}{p^n} = \frac{K_1^{(i)} + 2\,x_i\,P_n^{(i)} + p\,P_n^{(i)\,2}}{p^{n-1}} \in \mathbb{N}_0 \,. \tag{7}$$

For n = 1 this is trivial because $P_1^{(i)} = 0$. A special rôle plays $K_1^{(i)} = \frac{x_i^2 + b}{p}$, with the zeros x_i . Eq. (7) determines $K_n^{(i)}$, for $n \ge 2$, in terms of x_i and $P_n^{(i)}$ (and b, p). The digits of the p-adic integer are related to

$$L_{n-1}^{(i)} = \frac{x_n^{(i)} - x_{n-1}^{(i)}}{p^{n-1}}, \text{ for integer } n \ge 2.$$
(8)

Namely, the coefficient of p^n in the p-adic expansion is $L_n^{(i)}$, $n \ge 1$, starting with $L_0^{(i)} := x_i$. Now eq. (6) is used in computing $K_n^{(i)} p^n = x_n^{(i)\,2} + b$. This yields $K_{n-1}^{(i)} p^{n-1} + 2x_{n-1}^{(i)} L_{n-1}^{(i)} p^{n-1} + L_{n-1}^{(i)\,2} p^n p^{n-2}$. After elimination of $x_{n-1}^{(i)}$ with eq. (4) one has

$$K_n^{(i)} p^n = p^{n-1} \left(2 x_i L_{n-1}^{(i)} + K_{n-1}^{(i)} \right) + p^n \left(p^{n-2} L_{n-1}^{(i)2} + 2 P_{n-1}^{(i)} L_{n-1}^{(i)} \right) .$$
(9)

Because an overall factor p^n has to appear also on the *r.h.s.* one chooses

$$L_{n-1}^{(i)} = z_i K_{n-1}^{(i)}, \qquad (10)$$

where the *n* independent number z_i , for i = 1, 2 is determined by

$$2x_i z_i + 1 \equiv 0 \pmod{p} . \tag{11}$$

This is a linear congruence, and because $gcd(2x_i, p) = gcd(x_i, p) = 1$, the solution is unique, and by *Fermat*'s little theorem given by (see *e.g.*, Nagell, Theorem 38, pp. 76-77)

$$z_i \equiv -(2x_i)^{p-2} \,(mod \, p) \,. \tag{12}$$

(One might bother about this special choice of $L_{n-1}^{(i)}$, but the general requirement would be $2x_i L_{n-1}^{(i)} + K_{n-1}^{(i)} = 0 \pmod{p}$ with the unique solution $L_{n-1}^{(i)} \equiv -(2x_i)^{p-2} K_{n-1}^{(i)} \pmod{p}$ which has just been found.) This now becomes a recurrence for $K_n^{(i)}$ (after dividing by p^n) for $n \ge 2$ with input $K_1^{(i)}$:

$$K_n^{(i)} = K_{n-1}^{(i)} \left[\frac{1+2x_i z_i}{p} + z_i^2 \left(K_1^{(i)} + 2x_i P_{n-1}^{(i)} + p P_{n-1}^{(i)2} \right) + 2z_i P_{n-1}^{(i)} \right] .$$
(13)

Due to eq. (7) this could be converted to an equation involving only the $P_n^{(i)}$ and $P_{n-1}^{(i)}$ (and $p, x_i, z_i, K_1^{(i)}$). But this is not of interest here.

The proposition follows now from eq. (6) after the choice of $L_{n-1}^{(i)}$ from eqs. (10) and (11) which was valid modulo p:

$$x_n^{(i)} = x_{n-1}^{(i)} + z_i K_{n-1}^{(i)} p^{n-1} (mod \, p^n) .$$
⁽¹⁴⁾

Inserting $K_{n-1}^{(i)} p^{n-1}$ from eq. (7) (with $n \to n-1$) and replacing $K_1^{(i)}$ leads to

$$x_n^{(i)} = x_{n-1}^{(i)} + p z_i \left(\frac{x_i^2 + b}{p} + 2 x_i \frac{\hat{x}_{n-1}^{(i)}}{p} + \frac{\hat{x}_{n-1}^{(i)}}{p} \right) \pmod{p^n} , \qquad (15)$$

where we have used $p P_{n-1}^{(i)} = \hat{x}_{n-1}^{(i)} = x_{n-1}^{(i)} - x_i$. The second term on the *r.h.s.* simplifies after cancellation of the x_i and $x_{n-1}^{(i)} x_i$ terms to $z_i (x_{n-1}^{(i)2} + b)$.

Because we look for $x_n^{(i)} \in CRS_0(p^n) = \{0, 1, \dots, p^n - 1\}$ we use the $modp(a, p^n)$ notation explained in the proposition (replacing $(mod p^n)$). This then produces the asserted equation of the proposition. \Box

From Nagel's [2] proof of his Theorem 50, pp. 86 - 87, one would obtain the recurrence

$$x_n^{(i)} = modp \left(x_{n-1}^{(i)} + \left(-2 \left(x_{n-1}^{(i)} \right)^{p-2} \right) \left(\left(x_{n-1}^{(i)} \right)^2 + b \right), \, p^n \right).$$
(16)

for i = 1, 2 and $n \ge 2$, with input $x_1^{(i)} = x_i$.

The difference to the recurrence derived here is that the z_i of eq. (3) which needs besides p only the input x_i is in this case replaced by a similar quantity which used $x_{n-1}^{(i)}$.

The data p, b, x_1, x_2, z_1, z_2 given in the *Table*, for p = 3, 5, ..., 31 refers to $f(x) = x^2 + b \equiv 0 \pmod{p}$ with b > 0 and Legendre symbol $\left(\frac{-b}{p}\right) = +1$, and with b < 0 and Legendre symbol $\left(\frac{b}{p}\right) = +1$. Because of (mod p) the inputs x_1 and x_2 , and thus also z_1 and z_2 , are the same for corresponding positive or negative b. The different sequences for $n \geq 2$ arise from the b appearance in the recurrence under $(mod p^n)$.

Some examples: $\mathbf{p} = 5$: $b = 1, x_1 = 2, z_1 = 1$ produce the standard sequence $\{x_n^{(1)}\}_0^\infty$ (where a leading 0 for n = 0 has been added) [0, 2, 7, 57, 182, 2057, 14557, 45807, 280182, 280182, ...] which is <u>A048898</u>. $b = 1, x_3 = 2, z_1 = 2$ yields [0, 3, 18, 68, 443, 1068, 1068, 32318, 110443, 1672943, ...] which is <u>A048899</u>. $b = 4, x_1 = 2, z_1 = 2$ yields [0, 1, 11, 11, 261, 2136, 2136, 64636, 220886, 1392761, ...] which is <u>A268922</u> and $b = 4, x_2 = 4, z_2 = 3$ yields [0, 4, 14, 114, 364, 989, 13489, 13489, 169739, 560364, ...] which is <u>A269590</u>. The corresponding digit sequences $\{L_n^{(i)}\}_0^\infty$ from eq. (8) and $L_0^{(i)} = x_i$ are given in <u>A210850</u>, <u>A210851</u>, <u>A269591, A269592</u>, respectively. The $\{K_n^{(i)}\}_0^\infty$ of eq. (5) sequences are found under <u>A210848</u>, <u>A210849</u>, <u>A269593, A269594</u>, respectively.

The sequences for $\mathbf{p} = \mathbf{3}$, $\mathbf{b} = \mathbf{2}$, with $x_1 = 1$, $z_1 = 1$ and $x_1 = 2$, $z_2 = 2$ are <u>A268924</u>, <u>A271223</u>, <u>A271225</u>, and <u>A271222</u>, <u>A271224</u>, <u>A271226</u>.

Of course, one may also use the recurrence for other members of the residue classes of the considered b. For example, for p = 5, b = 6 also with $x_1 = 2$ and $z_1 = 1$ one finds [2, 12, 37, 162, 1412, 10787, 42037, 354537, 1526412, 3479537, ...], the standard sequence for the 5-adic integer $\sqrt{-6}$ (call it $+\sqrt{-6}$). The other approximation sequence for $x_2 = 3$ and $z_2 = 4$, $-\sqrt{-6}$, is [3, 13, 88, 463, 1713, 4838, 36088, 36088, 426713, 6286088, ...].

In Maple [4] one can use the package with(padic) and then the two expansion for the p-adic integers $\pm \sqrt{-b}$ are given, with $[evalp(RootOf(x^2+b), p, N)]$, up to Order p^{N-1} .

References

- [1] Gerhard Frey, Elementare Zahlentheorie, Vieweg & Sohn, Braunschweig, 1984
- [2] Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
- [3] Hensel's lemma, https://en.wikipedia.org/wiki/Hensel%27s_lemma
- [4] Maple http://www.maplesoft.com/
- [5] Newton's method, https://en.wikipedia.org/wiki/Newton%27s_method
- [6] Joseph H. Silverman and John Tate, Rational Points on Elliptic Curves, Springer, 1992

Keywords: p-adic square roots, Hensel lifting AMS MSC number: 11D09, 11S05

OEIS A-numbers: <u>A048898</u>, <u>A048899</u>, <u>A210848</u>, <u>A210849</u>, <u>A210850</u>, <u>A210851</u>, <u>A268922</u>, <u>A268924</u>, <u>A269590</u>, <u>A269591</u>, <u>A269592</u>, <u>A269593</u>, <u>A269594</u>, <u>A271222</u>, <u>A271223</u>, <u>A271224</u>, <u>A271225</u>, <u>A271226</u>.

Prime p	b	b	\mathbf{x}_1	$\mathbf{x_2}$	$\mathbf{z_1}$	\mathbf{z}_2	Prime p	b	b	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{z_1}$	$\mathbf{z_2}$
3	2	-1	1	2	1	2	23	5	-18	8	15	10	13
5	1	-4	2	3	1	4		7	-16	4	19	20	3
	4	-1	1	4	2	3	-	10	-13	6	17	21	2
7	3	-4	2	5	5	2		11	-12	9	14	14	9
	5	-2	3	4	1	6		14	-9	3	20	19	4
	6	-1	1	6	3	4	-	15	-8	10	13	8	15
11	2	-9	3	8	9	2		17	-6	11	12	1	22
	6	-5	4	7	4	7		19	-4	2	21	17	6
	7	-4	2	9	8	3		20	-3	7	16	18	5
	8	-3	5	6		10		21	-2	5	18	16	7
10	10	-1	1	10	5	6		22	-1	1	22	11	12
13	1	-12	5	8	9	4	29	1	-28	12	17	6	23
	3	-10	6	7	1	12		4	-25	5	24	26	3
	4	-9	3	10	2	11		5 C	-24	13	16		19
	9	$^{-4}$	2	11	3	10		6	-23	9	20	8	21
	10	-3	4	9	8	5		7	-22	14	15	1	28
17	12	-1	1	$\begin{array}{c} 12 \\ 13 \end{array}$	6 2	7	-	9 19	-20	7	22	2	27
11	$\begin{array}{c c} 1\\ 2\end{array}$	$-16 \\ -15$	$\begin{vmatrix} 4 \\ 7 \end{vmatrix}$	10	2 6	$\begin{array}{c} 15\\11 \end{array}$		13 16	$ig -16 \ -13$	4 10	$\begin{array}{c} 25 \\ 19 \end{array}$	18 13	11
	$\begin{array}{c} 2 \\ 4 \end{array}$	$^{-13}$	8	9	0	11 16		10 20	-13 -9	10 3	19 26	13 24	$\begin{array}{c} 16 \\ 5 \end{array}$
	8	$^{-13}$ -9	3	9 14	14	10 3		$\frac{20}{22}$	$\begin{vmatrix} -9\\-7 \end{vmatrix}$	5 6	20 23	12	17
	9	$-3 \\ -8$	5	14 12	5	12		$\frac{22}{23}$	$\begin{vmatrix} -7\\ -6 \end{vmatrix}$	8	$\frac{23}{21}$	9	20
	13	-3	2	15	4	12 13		23 24	-5	11	18	25	4
	15	$^{-4}$	6	11	7	10		$\frac{24}{25}$	$\begin{vmatrix} -3 \\ -4 \end{vmatrix}$	$\frac{11}{2}$	18 27	23 7	22
	16	$-2 \\ -1$	1	16	8	10 9		23 28	-1	1	28	14	15
19	2	-17	6	13	11	8	31	3	-28	11	20	7	10 24
10	3	-16	4	15	7	12	01	6	-25	5	26 26	3	23
	8	-11	87	12	4	15		11	-20	12	19	9	22
	10	-9	3	16	3	16		12	-19	9	22	12	19
	12	-7	8	11	13	6		13	-18	7	24	11	20
	13	-6	5	14	17	2		15	-16	4	$\overline{27}$	27	4
	14	- 5	9	10	1	18		17	-14	13	18	25	6
	15	-4	2	7	14	5		21	-10	14	17	21	10
	18	$^{-1}$	1	18	9	10		22	-9	3	28	5	26
							-	23	-8	15	16	1	30
								24	-7	10	21	17	14
								26	-5	6	25	18	13
								27	-4	2	29	23	8
								29	-2	8	23	29	2
								30	-1	1	30	15	16

Table: Odd primes, radicands -b , zeros $\mathbf{x_1},\,\mathbf{x_2}$ and numbers $\mathbf{z_1},\,\mathbf{z_2}$