Note on a Recurrence for Approximation Sequences of p-adic Square Roots

Wolfdieter Lang ${ }^{1}$

Abstract

A recurrence for the two standard approximation sequences of the p-adic square root $\sqrt{-b}$ is derived for those integers of b with Legendre symbol $\left(\frac{-b}{p}\right)=+1$.

In the context of algebraic congruences to prime-power moduli a standard theorem (see e.g., Nagell [2], Theorem $50, \mathrm{p} .87$) states that if a degree m polynomial $f(x)$ over the integers which is primitive (has $g c d$ of the coefficients equal to 1) and has a simple root x_{1} modulo a prime $p, f\left(x_{1}\right) \equiv 0(\bmod p)$, then the congruence $f(x)=0\left(\bmod p^{n}\right)$ has exactly one solution modulo p^{n}, x_{n} say, which is congruent to x_{1} modulo p for every $n \in \mathbb{N}$. The recursive proof adapts Newton's [5] method to modular analysis. In the p-adic setting it is also known as Hensel-lifting, an application of Hensel's lemma [1, 3]. Here we consider $f(x)=x^{2}+b$ with non-vanishing integer b. This note originated in a solution of the special exercise 1.8 , on p . 33, of [6] (or exercise 5 ii), p. 54, of [1]). The general case will be treated by the following proposition.
Proposition: Recurrence for p -adic $\pm \sqrt{-\mathrm{b}}$ approximation sequences
For $x_{n}^{(i)}=x_{n}^{(i)}(p, b)$, the solution of the congruence

$$
\begin{equation*}
x_{n}^{(i) 2}+b \equiv 0\left(\bmod p^{n}\right), \text { for } n=\{2,3, \ldots\}, \tag{1}
\end{equation*}
$$

with an odd prime p and $b \in \mathbb{Z} \backslash\{0\}$, the following recurrence holds. The notation $\bmod (k, p)$ (like in MAPLE [4]) is used to pick the representative of the residue class of k modulo p from the complete residue system $C R S_{0}(p)=\{0,1, \ldots, p-1\}$.

$$
\begin{equation*}
x_{n}^{(i)}=\operatorname{modp}\left(x_{n-1}^{(i)}+z_{i}\left(\left(x_{n-1}^{(i)}\right)^{2}+b\right), p^{n}\right) \quad \text { for } i=1,2 \text { and } n \geq 2, \text { with input } x_{1}^{(i)}=x_{i}, \tag{2}
\end{equation*}
$$

and the two simple roots x_{i} of $f(x) \equiv x^{2}+b(\bmod p)$, for b with Legendre symbol $\left(\frac{-b}{p}\right)=+1$, and

$$
\begin{equation*}
z_{i}=z_{i}\left(p, x_{i}\right)=\bmod p\left(-\left(2 x_{i}\right)^{p-2}, p\right) . \tag{3}
\end{equation*}
$$

Proof: The following three sequences $P_{n}^{(i)}, K_{n}^{(i)}$ and $L_{n}^{(i)}$ will be needed (they always depend on p and b):

$$
\begin{equation*}
x_{n}^{(i)}=x_{i}+P_{n}^{(i)} p, \tag{4}
\end{equation*}
$$

with an odd prime p.

$$
\begin{equation*}
x_{n}^{(i) 2}+b=K_{n}^{(i)} p^{n} . \tag{5}
\end{equation*}
$$

Like in the proof of Nagell's Theorem 50 [2] (or in Hensel-lifting) one uses also

$$
\begin{equation*}
x_{n}^{(i)}=x_{n-1}^{(i)}+L_{n-1}^{(i)} p^{n}, \text { for } n=2,3, \ldots . \tag{6}
\end{equation*}
$$

The aim is to find $L_{n-1}^{(i)}$, i.e., a recurrence formula which produces the numbers $x_{n}^{(i)}=x_{n}^{(i)}(p, b)$ lying in $C R S_{0}\left(p^{n}\right)=\left\{0,1 \ldots p^{n}-1\right\}$. This sequence $\left\{x_{n}^{(i)}\right\}_{n=0}^{\infty}$ with $x_{0}^{(i)}:=0$ and $x_{1}^{(i)}:=x_{i}$ (one of the two

[^0]simple zeros modulo p) is known as standard sequence representing a p -adic integer from \mathbb{Z}_{p} (the set of the p -adic integers).
See e.g., Frey [1] III, $\S 4$, for the definition of \mathbb{Z}_{p} as an equivalence class of sequences $\left\{s_{n}\right\}_{0}^{\infty}$ with $s_{n} \in \mathbb{Z}_{(p)}$, the set of rational numbers (in lowest terms) which have no factor p at all (e.g., 0), or p does not divide the denominator which is taken as a positive integer. Furthermore, $s_{n+1}-s_{n}=L_{p, n}$ with $L_{p, n} \in\left\{\left.L \in \mathbb{Q}| | L\right|_{p} \leq \frac{1}{p^{n}}\right\}$, with the p-adic valuation $|L|_{p}:=\frac{1}{p^{w_{p}(L)}}$, where $w_{p}(L)$ is for nonvanishing rational L the integer exponent a_{p} of p in the factorization $L=\varepsilon \prod p_{i}^{a_{i}}(\varepsilon=+1$ or -1$)$. If there is no factor p in the numerator or denominator of L then $w_{p}(L)=0$, and one puts $w_{p}(0)=\infty$. An equivalence relation between such sequences is defined by $\left\{s_{n}\right\} \sim\left\{s_{n}^{\prime}\right\}$ iff $s_{n} \equiv s_{n}^{\prime} \bmod \left(\mathbb{Z}_{(p)} p^{n}\right)$. This notation stands for $s_{n}-s_{n}^{\prime}=r_{p, n}$ with $r_{p, n} \in\left\{y \cdot p^{n} \mid y \in \mathbb{Z}_{(p)}\right\}=\left\{\left.r \in \mathbb{Q}| | r\right|_{p} \leq \frac{1}{p^{n}}\right\}$. (In [1] $|s|_{p}$ is called $\varphi_{p}(s)$, and our powers of p are n, not $n+1$.)
From eq. (4) with $P_{1}^{(i)}=0$ and eq. (5) we have, for $n \geq 2$,
\[

$$
\begin{equation*}
K_{n}^{(i)}=\frac{x_{n}^{(i) 2}+b}{p^{n}}=\frac{K_{1}^{(i)}+2 x_{i} P_{n}^{(i)}+p P_{n}^{(i) 2}}{p^{n-1}} \in \mathbb{N}_{0} \tag{7}
\end{equation*}
$$

\]

For $n=1$ this is trivial because $P_{1}^{(i)}=0$. A special rôle plays $K_{1}^{(i)}=\frac{x_{i}^{2}+b}{p}$, with the zeros x_{i}. Eq. (7) determines $K_{n}^{(i)}$, for $n \geq 2$, in terms of x_{i} and $P_{n}^{(i)}$ (and b, p).

The digits of the p-adic integer are related to

$$
\begin{equation*}
L_{n-1}^{(i)}=\frac{x_{n}^{(i)}-x_{n-1}^{(i)}}{p^{n-1}}, \text { for integer } n \geq 2 \tag{8}
\end{equation*}
$$

Namely, the coefficient of p^{n} in the p-adic expansion is $L_{n}^{(i)}, n \geq 1$, starting with $L_{0}^{(i)}:=x_{i}$. Now eq. (6) is used in computing $K_{n}^{(i)} p^{n}=x_{n}^{(i) 2}+b$. This yields $K_{n-1}^{(i)} p^{n-1}+2 x_{n-1}^{(i)} L_{n-1}^{(i)} p^{n-1}+L_{n-1}^{(i) 2} p^{n} p^{n-2}$. After elimination of $x_{n-1}^{(i)}$ with eq. (4) one has

$$
\begin{equation*}
K_{n}^{(i)} p^{n}=p^{n-1}\left(2 x_{i} L_{n-1}^{(i)}+K_{n-1}^{(i)}\right)+p^{n}\left(p^{n-2} L_{n-1}^{(i) 2}+2 P_{n-1}^{(i)} L_{n-1}^{(i)}\right) . \tag{9}
\end{equation*}
$$

Because an overall factor p^{n} has to appear also on the r.h.s. one chooses

$$
\begin{equation*}
L_{n-1}^{(i)}=z_{i} K_{n-1}^{(i)}, \tag{10}
\end{equation*}
$$

where the n independent number z_{i}, for $i=1,2$ is determined by

$$
\begin{equation*}
2 x_{i} z_{i}+1 \equiv 0(\bmod p) \tag{11}
\end{equation*}
$$

This is a linear congruence, and because $\operatorname{gcd}\left(2 x_{i}, p\right)=\operatorname{gcd}\left(x_{i}, p\right)=1$, the solution is unique, and by Fermat's little theorem given by (see e.g., Nagell, Theorem 38, pp. 76-77)

$$
\begin{equation*}
z_{i} \equiv-\left(2 x_{i}\right)^{p-2}(\bmod p) \tag{12}
\end{equation*}
$$

(One might bother about this special choice of $L_{n-1}^{(i)}$, but the general requirement would be $2 x_{i} L_{n-1}^{(i)}+$ $K_{n-1}^{(i)}=0(\bmod p)$ with the unique solution $L_{n-1}^{(i)} \equiv-\left(2 x_{i}\right)^{p-2} K_{n-1}^{(i)}(\bmod p)$ which has just been found.) This now becomes a recurrence for $K_{n}^{(i)}$ (after dividing by p^{n}) for $n \geq 2$ with input $K_{1}^{(i)}$:

$$
\begin{equation*}
K_{n}^{(i)}=K_{n-1}^{(i)}\left[\frac{1+2 x_{i} z_{i}}{p}+z_{i}^{2}\left(K_{1}^{(i)}+2 x_{i} P_{n-1}^{(i)}+p P_{n-1}^{(i) 2}\right)+2 z_{i} P_{n-1}^{(i)}\right] . \tag{13}
\end{equation*}
$$

Due to eq. (7) this could be converted to an equation involving only the $P_{n}^{(i)}$ and $P_{n-1}^{(i)}\left(\right.$ and $\left.p, x_{i}, z_{i}, K_{1}^{(i)}\right)$. But this is not of interest here.
The proposition follows now from eq. (6) after the choice of $L_{n-1}^{(i)}$ from eqs. (10) and (11) which was valid modulo p :

$$
\begin{equation*}
x_{n}^{(i)}=x_{n-1}^{(i)}+z_{i} K_{n-1}^{(i)} p^{n-1}\left(\bmod p^{n}\right) \tag{14}
\end{equation*}
$$

Inserting $K_{n-1}^{(i)} p^{n-1}$ from eq. (7) (with $n \rightarrow n-1$) and replacing $K_{1}^{(i)}$ leads to

$$
\begin{equation*}
x_{n}^{(i)}=x_{n-1}^{(i)}+p z_{i}\left(\frac{x_{i}^{2}+b}{p}+2 x_{i} \frac{\hat{x}_{n-1}^{(i)}}{p}+\frac{\hat{x}_{n-1}^{(i) 2}}{p}\right)\left(\bmod p^{n}\right) \tag{15}
\end{equation*}
$$

where we have used $p P_{n-1}^{(i)}=\hat{x}_{n-1}^{(i)}=x_{n-1}^{(i)}-x_{i}$. The second term on the r.h.s. simplifies after cancellation of the x_{i} and $x_{n-1}^{(i)} x_{i}$ terms to $z_{i}\left(x_{n-1}^{(i) 2}+b\right)$.
Because we look for $x_{n}^{(i)} \in C R S_{0}\left(p^{n}\right)=\left\{0,1, \ldots p^{n}-1\right\}$ we use the $\bmod p\left(a, p^{n}\right)$ notation explained in the proposition (replacing $\left(\bmod p^{n}\right)$). This then produces the asserted equation of the proposition.

From Nagel's [2] proof of his Theorem 50, pp. 86-87, one would obtain the recurrence

$$
\begin{equation*}
x_{n}^{(i)}=\operatorname{modp}\left(x_{n-1}^{(i)}+\left(-2\left(x_{n-1}^{(i)}\right)^{p-2}\right)\left(\left(x_{n-1}^{(i)}\right)^{2}+b\right), p^{n}\right) \tag{16}
\end{equation*}
$$

for $i=1$, 2 and $n \geq$ 2, with input $x_{1}^{(i)}=x_{i}$.
The difference to the recurrence derived here is that the z_{i} of eq. (3) which needs besides p only the input x_{i} is in this case replaced by a similar quantity which used $x_{n-1}^{(i)}$.
The data $p, b, x_{1}, x_{2}, z_{1}, z_{2}$ given in the Table, for $p=3,5, \ldots, 31$ refers to $f(x)=x^{2}+b \equiv 0(\bmod p)$ with $b>0$ and Legendre symbol $\left(\frac{-b}{p}\right)=+1$, and with $b<0$ and Legendre symbol $\left(\frac{b}{p}\right)=+1$. Because of $(\bmod p)$ the inputs x_{1} and x_{2}, and thus also z_{1} and z_{2}, are the same for corresponding positive or negative b. The different sequences for $n \geq 2$ arise from the b appearance in the recurrence under $\left(\bmod p^{n}\right)$.
Some examples: $\mathbf{p}=\mathbf{5}: b=1, x_{1}=2, z_{1}=1$ produce the standard sequence $\left\{x_{n}^{(1)}\right\}_{0}^{\infty}$ (where a leading 0 for $n=0$ has been added) $[0,2,7,57,182,2057,14557,45807,280182,280182, \ldots]$ which is A048898. $b=1, x_{3}=2, z_{1}=2$ yields $[0,3,18,68,443,1068,1068,32318,110443,1672943, \ldots]$ which is A048899. $b=4, x_{1}=2, z_{1}=2$ yields $[0,1,11,11,261,2136,2136,64636,220886,1392761, \ldots]$ which is A268922 and $b=4, x_{2}=4, z_{2}=3$ yields $[0,4,14,114,364,989,13489,13489,169739,560364, \ldots]$ which is A269590. The corresponding digit sequences $\left\{L_{n}^{(i)}\right\}_{0}^{\infty}$ from eq. (8) and $L_{0}^{(i)}=x_{i}$ are given in A210850, A210851, A269591, A269592, respectively. The $\left\{K_{n}^{(i)}\right\}_{0}^{\infty}$ of eq. (5) sequences are found under A210848, A210849, A269593, A269594, respectively.
The seqeunces for $\mathbf{p}=\mathbf{3}, \mathbf{b}=\mathbf{2}$, with $x_{1}=1, z_{1}=1$ and $x_{1}=2, z_{2}=2$ are A268924, A271223, A271225, and A271222, A271224, A271226.

Of course, one may also use the recurrence for other members of the residue classes of the considered b. For example, for $p=5, b=6$ also with $x_{1}=2$ and $z_{1}=1$ one finds $[2,12,37,162,1412,10787,42037,354537,1526412,3479537, \ldots]$, the standard sequence for the 5 -adic integer $\sqrt{-6}$ (call it $+\sqrt{-6}$) . The other approximation sequence for $x_{2}=3$ and $z_{2}=4,-\sqrt{-6}$, is $[3,13,88,463,1713,4838,36088,36088,426713,6286088, \ldots]$.
In Maple [4] one can use the package with(padic) and then the two expansion for the p-adic integers $\pm \sqrt{-b}$ are given, with $\left[\operatorname{evalp}\left(\operatorname{Root} O f\left(x^{2}+b\right), p, N\right)\right]$, up to Order p^{N-1}.

References

[1] Gerhard Frey, Elementare Zahlentheorie, Vieweg \& Sohn, Braunschweig, 1984
[2] Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
[3] Hensel's lemma, https://en.wikipedia.org/wiki/Hensel\'s_lemma
[4] Maple http://www.maplesoft.com/
[5] Newton's method, https://en.wikipedia.org/wiki/Newton\'s_method
[6] Joseph H. Silverman and John Tate, Rational Points on Elliptic Curves, Springer, 1992

Keywords: p-adic square roots, Hensel lifting
AMS MSC number: 11D09, 11S05
OEIS A-numbers: A048898, A048899, A210848, A210849, A210850, A210851, A268922, A268924, A269590, A269591, A269592, A269593, A269594, A271222, A271223, A271224, A271225, A271226.

Table: Odd primes, radicands -b, zeros $\mathrm{x}_{1}, \mathrm{x}_{2}$ and numbers $\mathrm{z}_{1}, \mathrm{z}_{2}$

Prime p	b	b	x_{1}	x_{2}	z_{1}	z_{2}	Prime p	b	b	x_{1}	x_{2}	z_{1}	z_{2}
3	2	-1	1	2	1	2	23	5	-18	8	15	10	13
5	1	-4	2	3	1	4		7	-16	4	19	20	3
	4	-1	1	4	2	3		10	-13	6	17	21	2
7	3	-4	2	5	5	2		11	-12	9	14	14	9
	5	-2	3	4	1	6		14	-9	3	20	19	4
	6	-1	1	6	3	4		15	-8	10	13	8	15
11	2	-9	3	8	9	2		17	-6	11	12	1	22
	6	-5	4	7	4	7		19	-4	2	21	17	6
	7	-4	2	9	8	3		20	-3	7	16	18	5
	8	-3	5	6	1	10		21	-2	5	18	16	7
	10	-1	1	10	5	6		22	-1	1	22	11	12
13	1	-12	5	8	9	4	29	1	-28	12	17	6	23
	3	-10	6	7	1	12		4	-25	5	24	26	3
	4	-9	3	10	2	11		5	-24	13	16	10	19
	9	-4	2	11	3	10		6	-23	9	20	8	21
	10	-3	4	9	8	5		7	-22	14	15	1	28
	12	-1	1	12	6	7		9	-20	7	22	2	27
17	1	-16	4	13	2	15		13	-16	4	25	18	11
	2	-15	7	10	6	11		16	-13	10	19	13	16
	4	-13	8	9	1	16		20	-9	3	26	24	5
	8	-9	3	14	14	3		22	-7	6	23	12	17
	9	-8	5	12	5	12		23	-6	8	21	9	20
	13	-4	2	15	4	13		24	-5	11	18	25	4
	15	-2	6	11	7	10		25	-4	2	27	7	22
	16	-1	1	16	8	9		28	-1	1	28	14	15
19	2	-17	6	13	11	8	31	3	-28	11	20	7	24
	3	-16	4	15	7	12		6	-25	5	26	3	28
	8	-11	87	12	4	15		11	-20	12	19	9	22
	10	-9	3	16	3	16		12	-19	9	22	12	19
	12	-7	8	11	13	6		13	-18	7	24	11	20
	13	-6	5	14	17	2		15	-16	4	27	27	4
	14	-5	9	10	1	18		17	-14	13	18	25	6
	15	-4	2	7	14	5		21	-10	14	17	21	10
	18	-1	1	18	9	10		22	-9	3	28	5	26
								23	-8	15	16	1	30
								24	-7	10	21	17	14
								26	-5	6	25	18	13
								27	-4	2	29	23	8
								29	-2	8	23	29	2
								30	-1	1	30	15	16

[^0]: ${ }^{1}$ wolfdieter.lang@partner.kit.edu, http://www.itp.kit.edu/~wl

