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Note on a Recurrence for Approximation Sequences of p-adic Square
Roots
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Abstract

A recurrence for the two standard approximation sequences of the p-adic square root v/ —b is derived
for those integers of b with Legendre symbol (%’) = +1

In the context of algebraic congruences to prime-power moduli a standard theorem (see e.g., Nagell
[2], Theorem 50, p. 87) states that if a degree m polynomial f(z) over the integers which is primitive
(has gcd of the coefficients equal to 1) and has a simple root 1 modulo a prime p, f(x1) = 0(modp),
then the congruence f(x) = 0(modp™) has exactly one solution modulo p", x,, say, which is congruent
to x1 modulo p for every n € N. The recursive proof adapts Newton’s [5] method to modular analysis.
In the p—adic setting it is also known as Hensel-lifting, an application of Hensel’s lemma [1, 3]. Here we
consider f(xz) = x? + b with non-vanishing integer b. This note originated in a solution of the special
exercise 1.8, on p. 33, of [6] (or exercise 5 ii), p. 54, of [1]). The general case will be treated by the
following proposition.
Proposition: Recurrence for p-adic +v/—b approximation sequences

For a:,(f) = xg) (p,b), the solution of the congruence

xr(ﬁ)g + b = 0(modp"), forn = {2, 3,..}, W)

with an odd prime p and b € Z\ {0}, the following recurrence holds. The notation modp(k,p) (like
in MAPLE []]) is used to pick the representative of the residue class of k modulo p from the complete
residue system CRSy(p) = {0, 1, ..., p—1}.

2 = modp (xff_)l + 2 ((:1:751_)1)2 + b), p") for i = 1, 2 and n > 2, with input a:l(i) =z, (2)

and the two simple roots x; of f(x) = z% + b(modp), for b with Legendre symbol (%) = +1, and

zi = z(p, ) = modp (—(2 fL‘i)p_gv p) . (3)
Proof: The following three sequences Pff), Kff) and Lg ) will be needed (they always depend on p and
b):
z) = @ + PYp, (4)
with an odd prime p. . ‘
#02 4 b = KO (5)
Like in the proof of Nagell’'s Theorem 50 [2] (or in Hensel-lifting) one uses also
xg) = xs)_l + Lg)_lp", forn =23, ... (6)
The aim is to find ngl , i.e., a recurrence formula which produces the numbers ng) = :zzgf ) (p,b) lying

in CRSy(p™) = {0, 1...p™ — 1}. This sequence {:c$f>};°:0 with x(()i) := 0 and xgi) := x; (one of the two
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simple zeros modulo p) is known as standard sequence representing a p-adic integer from Z, (the set of
the p-adic integers).

See e.g., Frey [1] 111, §4, for the definition of Z, as an equivalence class of sequences {s, }5° with s, € Zp),
the set of rational numbers (in lowest terms) which have no factor p at all (e.g.,0), or p does not
divide the denominator which is taken as a positive integer. Furthermore, s,41 — s, = L,, with

1
L,, € {L € Q]| |L, < #}, with the p-adic valuation |L|, := D) where wy,(L) is for non-
p
vanishing rational L the integer exponent a, of p in the factorization L = ¢ [] p{* (¢ = +1 or —1). If

there is no factor p in the numerator or denominator of L then wy,(L) = 0, and one puts wy(0) = oo.

An equivalence relation between such sequences is defined by {s,} ~ {s}} iff s, = s, mod (Z, p") .
+. (In

Sn p

This notation stands for s, — s}, = rpn With 7y, € {y-p" |y € Zp)} = {r € Q| ||, < p—ln

[1] |s|p is called ¢p(s), and our powers of p are n, not n + 1.)

From eq. (4) with Pl(i) = 0 and eq. (5) we have, for n > 2,

A2 b KD 4 20, PO 4 P

K@ —
pn pn—l

n

S No . (7)

(i)_x%—Fb

D - 0. A special role plays K,

For n = 1 this is trivial because P1( , with the zeros z;. Eq.

(7) determines K for n > 2, in terms of z; and P\ (and b, p).
The digits of the p-adic integer are related to

(%) (%)

LS)_I = T_ln, for integer n > 2. (8)
Namely, the coefficient of p™ in the p-adic expansion is Lg ), n > 1, starting with L(i) = Now eq.

(6) is used in computing K p" = z{* + b. This yields K| p"~' 4 220 Ll prt L“)2 2,

After elimination of 5’3211 with eq. (4) one has

KOyt = p 7 (20 L0 + KO ) 400 (02008 + 2P0 1) 9)

n
Because an overall factor p™ has to appear also on the r.h.s. one chooses
(1) )=z K(i)l’ (10)
where the n independent number z;, for ¢ = 1, 2 is determined by
27,2 + 1 = 0(modp) . (11)

This is a linear congruence, and because ged(2z;,p) = ged(z;,p) = 1, the solution is unique, and by
Fermat’s little theorem given by (see e.g., Nagell, Theorem 38, pp. 76-77)

2z = —(22;)P"2 (modp) . (12)

@ but the general requirement would be 2 x; L +

n—1° n—1
(i ) = —(2x;)P2 K,(fll (mod p) which has just been found.)

after d1v1ding by p") for n > 2 with input K y):

(One might bother about this special choice of L,’
(1)
K

n—1

= 0 (mod p) with the unique solution L,
(1) (

This now becomes a recurrence for Ky

KO = g0 12z 22 (K() + 2z, PV 4 ppl)? ) + 2ziP£f)1] . (13)
p

2



Due to eq. (7) this could be converted to an equation involving only the Py(f) and Péi_)l (and p, z;, z;, K gl))
But this is not of interest here.
The proposition follows now from eq. (6) after the choice of Lg)_l from eqgs. (10) and (11) which was
valid modulo p:

x,(f) = m(i) + z; K(i)

n1 w1 P (modp™) . (14)
Inserting K (izl p"~! from eq. (7) (with n — n — 1) and replacing K y) leads to

n

' , 2 4} NO) :%(i)2
x%’) = afff)_l + pz i it SR Lt (modp") , (15)
b b b
where we have used prli_)l = :%gf)_l = xs)_l — x;. The second term on the r.h.s. simplifies after

cancellation of the z; and 95531 x; terms to z; (935321 + b).
Because we look for 2 € CRSy(p") = {0, 1,...p" — 1} we use the modp(a,p™) notation explained
in the proposition (replacing (modp™)). This then produces the asserted equation of the proposition.

0

From Nagel’s [2] proof of his Theorem 50, pp. 86 - 87, one would obtain the recurrence

o) = modp (2, + (=2 (@) )2 (02 )* + b), ™). (16)
fori = 1, 2 and n > 2, with input Il(i) = ;.
The difference to the recurrence derived here is that the z; of eq. (3) which needs besides p only the

input x; is in this case replaced by a similar quantity which used mfﬁl

The data p, b, 21, T2, 21, 22 given in the Table, for p = 3, 5, ..., 31 refers to f(z) = 22 + b = 0(modp)
—b b

with b > 0 and Legendre symbol <> = +1, and with b < 0 and Legendre symbol <> = +1.
p p

Because of (mod p) the inputs 1 and x2, and thus also z1 and z9, are the same for corresponding positive
or negative b. The different sequences for n > 2 arise from the b appearance in the recurrence under
(modp™).

Some examples: p = 5: b = 1,21 = 2,21 = 1 produce the standard sequence {x,(f)}go (where a leading
0 for n = 0 has been added) [0,2,7,57,182,2057,14557,45807,280182,280182, ...] which is A048898.
b = 1l,x3 = 2,21 = 2 yields [0, 3,18,68,443, 1068, 1068, 32318, 110443, 1672943, ...] which is A048899.
b =421 = 2,21 = 2yields [0,1, 11,11, 261, 2136, 2136, 64636, 220886, 1392761, ...] which is A268922 and
b = 4,20 = 4,29 = 3 yields [0,4,14, 114, 364,989, 13489, 13489, 169739, 560364, ...| which is A269590.
The corresponding digit sequences {Lgf) 6° from eq. (8) and L(()i) = x; are given in A210850, A210851,
A269591, A269592, respectively. The {K}(f)}go of eq. (5) sequences are found under A210848, A210849,
A269593 , A269594, respectively.

The seqeunces for p = 3, b = 2, with 1 = 1,21 = 1 and z1 = 2, 20 = 2 are A268924, A271223,
A271225, and A271222, A271224, A271226.

Of course, one may also use the recurrence for other members of the residue classes of the con-
sidered b. For example, for p = 5, b = 6 also with 21 = 2 and 2y = 1 one finds
[2,12,37,162,1412,10787,42037, 354537, 1526412, 3479537, ...], the standard sequence for the 5-adic in-
teger v/—6 (call it ++/—6) . The other approximation sequence for x5 = 3 and z = 4, —/—6, is
[3,13, 88,463, 1713, 4838, 36088, 36088, 426713, 6286088, ...].

In Maple [4] one can use the package with(padic) and then the two expansion for the p-adic integers
++/—b are given, with [evalp(RootO f(x? + b),p, N)], up to Order p™¥ 1.
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Table: Odd primes, radicands —b , zeros x;, X2 and numbers z,, z,
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