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Note on a— and z—sequences of Sheffer number triangles for certain
generalized Lah numbers
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Abstract

The so-called a— and z—sequences for Sheffer number triangles provide a recurrence for each entry
in terms of those of the preceding row. The a— and z—sequences for the Sheffer triangles of the
generalized Lah numbers, called L[d, a], are considered.

For each Sheffer number triangle S = (g(t), f(t)) with exponential generating functions (e.g.f. s)
() k o0 k
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g(t) = E gk —, where go = 1, and f(t) = ¢ f(t), with f(¢t) = E fr —, where fo # 0, one can give
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a recurrence for the entries of the first column of S, in matrix notation S(n, 0) in terms of maximal n
entries of the preceding row, i.e.,

n—1
S(n,0) =n Z z;S(n—1,j7), for n>1, with S(0,0) =1, (1)
j=0
where the z-sequence has e.qg.f.

N S UL S FRNN S
Ex(y) =) i fE(y) (1 g(f[”(y))> ' 2

J=0

Here the compositional inverse of f is denoted by fI=1.
The recurrence for the other entries of the lower triangular (infinite demensional) Sheffer matrix S is
given by the a—sequence.

S(n,m):2 m—‘1+] ajSn—1,m—-1+y), for n>1,m>1, (3)
m J J
=0
with e.g.f. . '
Y’ Y
Ea(y) = g aj= = ) (4)
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For details see the W. Lang link [1], part 2, where also the references [5],[3],[6] are given, which, however,
refer to the Riordan triangle case.

The generalized non-negative Lah number triangles L[d,a], with d € N and a = 0 if d = 1, and
ged(d, a) = 1, i.e., a € RRS(d), the smallest positive restricted residue system modulo d, have been
proposed in [2], section 2, C) 4. We do not repeat here the properties of these lower triangular (infinite
dimensional) triangles L[d, a] as transition matrices between [d, a|—generalizations of certain rising and
falling factorials but concentrate on the a— and z—sequences.
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The first instances are L[1,0] L = A271703, L[2,1] =A286724, L[3,1] = A290596, L[3,2] =
A290598, L[4,1] = A290604, L[4,3] = A292219.
The Sheffer structure is

1 t
Lid,a] = .
d.a] <(1_dt)%a,1_dt> (5)
Thus the compositional inverse of f is
(1] - Yy 6

The e.g.f. of the a—sequence is therefore Fa(d;y) = 1+ dy, with the sequence a(d) = {1, d, repeat(0)}.
This means that the recurrence is always of the three term type (see also [2], eq. (143)):

L(d,a;n,m) = EL(d,a;n—l,m—l) + ndL(d,a;n—1,m), for n e Nym=1,2,..,n. (7)
m

As mentioned above this recurrence has to be used in connection wit the one from the z—sequence for
the m = 0 column, to be discussed now.

For the z—sequence the analysis becomes more involved. The e.g.f. is (see [2], eq. (142))

2a

1 dy 4
Ez(d, a; = (14dy=|1-(1- ,
z(d, a;y) ( y)y[ ( 1+dy> ]

= (tayy [1- 0+ (®)

Lemma 1: Series Ez(d, a;y)

Ez(d,a;y) = 2a+zk' Z(d,a; k), with
k
Z(d,a; k) = H2a+ (j—1)d). (9)
Proof:

1 2a7 1 = (2a\F (=dy)*
- 1— 1 d = — 1— _
y[ (1 + dy) %] y[ %(d Kl

© 9.\ Lyl © 9,0\ kL op (—1)F
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k1<d>(d) k! kzo<d k+1 k' (10)

with the rising factorial 2% := H? oz +5)ifk € N and 20 := 1.

This has to be multiplied with (1 4+ dy) producing the leading term 2 a, and the coefficient of %, k>1

becomes
k+1 k
2_a i (_1)k‘ dk+1 4+ d 2_a (_1)k71 d_kk
d k+1 d k

. 1 k—1 ' (_1)k; k .
= (-1) Y [[@a+dj) - [2a+dk) —d(k+1)] = = [[eae+di-1). 1)
j=0 Jj=0
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The z(d, a) sequence has therefore the entries

2a, for k =0
z(d,a; k) = (12)
(-1DkZ(d,a;k), fork > 1

Examples:

1) 2(1,0;k) = 0, for k > 0.

2) 2(2,1;0) = 2, 2(2,1;k) = 0, for k > 1.

3) ~[3 1] — {2 2 25 258 _ 25811 2581114 }_ {2 1 _Q 20 —176 6160 }

[ 20 3 4 5
4) 2[3,2] = {4, -4, %, — 4710 4TI003 4“01316 L= {4, —2, 2870, 728 —20120 3
5) 2[4,1] — {2, ¥, 6 22610 2261014 226101418, }
= {2,2, -8, 60, —672. 10080, } — 2*{1 1,-4,30, —336, 5040, ...}.
26 2610 _2:6-10-14 2:6-10-14-18 261014-18-22
6) [ ] {6 9 4 9 5 PR 6 5 }

= {6, 6 40 —420, 6048, —110880, ...} = 2% {3, —3, 20, —210, 3024, —55440, ...}.
The third and fourth example shows that some entries become fractional, with powers of 3 in the denom-
inator.
See the instances z(3,1;k) = A290599(k)/A038500(k + 1), 2(3,2;k) = A290603(k)/A038500(k + 1),
z(4,1; k) = 2%A292220(k) and 2(4,3; k) = 2%A292221(k).
The question is for which k& + 1 values, with & > 1, z(d, a; k) (in lowest terms) is fractional, i.e., which
k + 1 values do not divide the numerator

k
N(z(d,a;k)) = H (2a + (j—1)d) = (=1)* P(d, a; k) (13)
k
= (—DFsign(2a—d)|d — 2a| [[ 2a + (i —1)d). (14)
j=1

For this analysis we state two trivial Lemmata.
Lemma 2:

The product P(d,a;k) has all numbers 2a (mod d) from the interval [2a, Pyax(d,a;k)], with
Poax(d,a;k) :=2a + (k—1)d = d(k+1) — 2(d — a) as factors. In addition the (sometimes negative
or vanishing) number 2a — d is a factor.

This is obvious from the definition of P(d,a; k) in eq. (14).

The number |[d — 2a| (0 only for d = 2 because ged(d, a) = 1) will be called ‘the first number’ in
P(d,a; k) (even if sign(2a — d) is negative). Note that if 2a — d is not positive then this first number
d — 2a is congruent to 2 modulo d only for [d,a] = [1,0], [2,1] or [4,1].

Corollary 1: Even d, factors

Ifd = 2D, D € N, then P(2 D, a;k) has all numbers ¢ (mod D) from the interval [a, Ppax(2 D, a; k)],
with Ppax(2D,a;k) := a+ (k—1)D = D(k+1) — 2D + a as factors. In addition there is a negative
factor —28T1 (D — a). The first (positive) number is then 25+ (D — a).

Lemma 3:
P(d,a;k) = (2a)**' (mod d), for k > 1.
This is also clear because P(d,a; k) has k + 1 factors, each 2a (mod d).
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Corollary 2: Even d, congruence

Ford = 2D, D € N,P(2D,a;k) := FE2EH = ¢k+1 (mod D) for k > 1.

To find out which numbers appear in the denominators of z(d,a; k), for & > 1, one looks first at the
power sequence {(2a)*T1};~_; (mod d). Such modular power sequences always become (or are already)
periodic because the sequence has more than d terms, but there are only d possible values from RS- (d)
(the smallest non-negative residue system modulo d). See the Table for d = 1, ..., 10, and the restricted
a values.

Proposition 1: Denominators of z(3, a; k)

z(3,a;k) has for a = 1, 2 the denominator (in lowest terms) A038500(k + 1) for & > 0, i.e., the highest
power of 3 in k + 1.

Proof:

For k = 0 this is trivial; the denominator is 1.

i) In the cases [d,a] = [3,1] and [3,2] it is clear that 3 cannot divide P(3,1;k) for & > 1, because
P(3,1;k) = 12 (mod 3) depending on the parity of k. The same holds for P(3,2;k) = 1 (mod 3).

Therefore, in the prime factorization of k+ 1 one can separate the powers of the prime 3 which will never
divide P(3,a;k), hence Num(z(3,a;k)), for a = 1, 2. This explains why the denominator of z(3,a; k)
has certainly a factor A038500(k + 1), the highest power of 3 in k& + 1. But at this stage of the argument
there could remain more factors of £ 4+ 1 in the denominator.

ii) Therefore one has to show that powers of primes congruent to 1 or 2 modulo 3 of k+ 1 always divide
— kE+1
P(3,a;k). For this we consider the factorization k + 1 = + H 61’] H p62’3 = - P2, with

P1 = 1 (mod 3) the product from powers of prime 1 (mod 3) (A002476) and P2 the product from

powers of primes 2 (mod 3) (A003627). P2is = 1 (mod 3) or = 2 (mod 3) if szzzl es; is even or

odd, respectively. We omit the arguments (d) of the factors Pi.

Ifd = 3, a = 1 Lemma 2 shows that all numbers 2 (mod 3) from 2 to Ppax(3,1;k) = (k+1)+2(k—1) =

3(k+1) — 4 appear as factors in P(3,1;k). Therefore in the second case, when P2 = 2 (mod 3), we

show that P2 < 3(k+ 1) — 4. This is clear because 3(k+1) — 4 > 3k+1 —4 > 3P2 — 4 > P2,
e., 2P2 > 2. which is trivial because P2 > 2.

In the first case, when P2 = 1 (mod 3), this number P2 will be shown to appear as a factor in P(3,1; k)
_ !
as the 2 (mod 3) number 2- P2. Namely Ppax(3,1;k) = 3(k+1)—4 > 3k+1—-4 > 3P2—-4 > 2.P2,
|

e., P2 > 4. This is trivial because the smallest prime in P2 is 2 and the exponent sum is now even,
hence P2 > 4.

For P1 one also shows that the 2 (mod 3) number 2- P1 is always a factor of P(3,1; k) because, as above,
!

this reduces to P1 > 4 which is trivial because the smallest prime in P1 is 7. This concludes the proof
fora = 1.

iii) If @ = 2 then all numbers congruent to 1 modulo 4 from 4 to Ppax(3,2;k) = 3(k+1) — 2 appear in
P(3,2; k), and one can proceed as above. If P2 = 2 (mod 3) one shows that the 1 (mod 3) number 2 P2
is smaller than 3 (k+1) — 2. This results in the trivial inequality P2 > 2. In the other case for which P2 =
1 (mod 3) this reduces to the inequality 2 P2 > 2. The same appears for P1: 2 P1 > 2 is satisfied be-
cause P1 > 7. O

This method can now be generalized to higher [d, a] cases. Observe that in the proof we did not use the
first number in P(d, a; k). It will turn out that in general also this number will have to be used for small
numbers k£ + 1 for certain a values.
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Proposition 2: Integer sequences {z(4,a;k)}k>0

The denominators of z(4,a; k) (in lowest terms) are for a = 1, 3 always 1. (This holds also for the not
considered case a = 2, with z(4,2;0) = 4, and 2(4,2;k) = 0, for £ > 1.)

Proof:

For k = 0 this is clear: 2(4,a;0) = 2a.

P(4,a;k) = 0 (mod 4), k > 1, for a = 1 and 3 (Lemma 3). Also P(4,a;k) = 1 (mod 2) for these a
values (Corollary 1).

Each of the three prime power factors of k +1 = P1- P2 - P3 (powers of primes modulo 4) can be
shown to be a factor of P(4,a;k). There is no PO and P2 = 2°2. Pnax(4,1;k) = 4(k + 1) — 6 or
Prax(4,3;k) = 4(k+1) — 2, and Prax(4,a;k) = 2(k + 1) — 4 + a for the odd numbers in P(4,a; k).
For P2 = 2¢ this is trivial, because P(4,a;k) has at least the factors 2k+1 and 2F+1 > 92 > 22,

Here the above used procedure will not work for for 2 in P2 = 2 (mod 4), the odd exponent sum case,
for all K > 1 if @ = 1. But for this 2 the first number of P(4,1;k) namely |4 — 2| = 2 comes to help,
for k = 1. This standard procedure would run as follows. P2 = 2 (mod 4) or = 0 (mod 4), therefore
we look for 2 P2 or P2, respectively, in P(4,a;k) = 0 (mod 4). This leads in the first case, with odd
exponent sum of P2, to 2P2 > 6 or > 2 for a = 1 or a = 3, respectively, and in the other case to
3P2 > 6 or > 2. Because in the first case P2 > 2 the case a = 1 is not satisfied. In the second case,
with P2 > 4, there is no problem. Thus one has to treat for a = 1 the case k + 1 = 2 separately, using
the first number 2 in P(4,1;1), as announced.

P1, the powers of primes = 1 (mod 4) (A002144), and P3, the powers of primes = 3 (mod 4)
(A002145), are both = 1 (mod 2) (odd). Now one looks for P1 and P3 in P(4,a;k) = 1 (mod 2). This
is successful because Ppax(4,a;k) > 2(k+1) —4+a > 2 Pi— 4+ a, and one proves 2 Pi — 4 +a > Pi,
fori = 1,3. For a = 1 and @ = 3 this becomes Pi > 3 and Pi > 1, respectively. This is trivial for
both Pi because they are are > 5 or > 3 fori = 1 or 3, respectively. m|

To finish we discuss the case d = 9 in order to explain the general procedure in a more involved show
piece.

Proposition 3: {z(9,a;k)}k>0

The denominators of z(9,a; k) for a = 1, 2,4, 5, 7, 8 are all A038500(k + 1), the highest power of 3 in
k+ 1.

Proof

(i) P(9,a;k) cannot have a divisor 3 because otherwise (from Lemma 3) (2a)¥*! = 0 (mod 3), due to
P(9,a;k) = (2a)**! + 9K = 3 L with integers K and L. This means that a**' = 0 (mod 3), which
implies that 3 has to divide a, contradicting ged(9, a) = 1. (In passing: the sequences {z(9,a; k) }k>—o
for a = 3 and a = 6 are integer ones.). Thus the factor P3 = 3% in the prime number factorization
of k + 1 can never divide P(9,a;k), and this highest power of 3 in & + 1 certainly remains in the
denominator of z(9,a; k).

As above one has to show that each of the other factors in k + 1, i.e., P1-P2-P4-P5- P7- P8, divide
P(9,a;k) (whose modulo 9 congruence property depends on a (see the Table)). P6 is not present. For
these prime sequences see A061237, A061238, A061239, A061240, A061241, A061242.

Prax(9,a:k) = 9(k+1) — 2(9 — a), and the proofs first check the standard estimates like above.

(ii) Each factor Pi is analysed for the possible mod 9 subfactors. P1 = 1 (mod 9), P2 = 2,4,8, 7,5, 1
(mod 9), P4 = 4,7, 1 (mod9), P5 = 5,7,8,4,2,1 (mod9), P7T = 7,4,1 (mod9), P8 = 8,1
(mod 9). For each case the sum of the exponents of the relevant primes mod 9 satisfy a certain congruence
condition with the modulus given by the period of {i},> for Pi. E.g., if in k + 1 the factor P2 = 7
(mod 9) then Z]Nfl e2j = 4 (mod 6). This subfactor of P2 will be abbreviated as P2,.
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(iii) Let each specific n (mod 9) instance of these Pi sub-factors be collected in Q(9, n). E.g.,
Q(9,4) = {P2), P4(3), P54(6), PT23)}, with the index giving the sum of the exponents modulo the
periods in bracket. Each Q(9, n) is treated as a representative for its Pi sub-factors for all possible a
values. A number m(9,n,a) is determined such that m(9,n,a) Q(9, n) = 2a (mod 9). Thus Q(9, 2) =
{P21(6)7 P52(6)} is multiplied by m(9, 2, a) = a. Q(Q, 1) = {Pl, P26(6)7 P43(3), P56(6)7 P73(3), P82(2)}
is multiplied by m(9,1,a) = 2a (mod 9), i.e., 2,4, 8, 1,5, 7. Q(9,4) needs m(9,4,a) = 5, 1,2, 7, 8, 4,
for the relevant rising 2a values. Q(9, 5) needs m(9,5,a 4,8,7,2,1,5 Q(9, 7) needs m(9,7,a) =
8,7,5,4,2, 1, and Q(9, 8) needs m(9,8,a) = 7, 5, 1, 8,
(iv) Each of these 2a (mod 9) numbers m(9,n,a)Q(9,
m(9,n,a) Q(9, n) < Punax(9,a; k) with Ppax(9,a;k) = 9(k
9Q(9, n) —2(9—a) > m(d,n,a)Q(9, n).

) =
4, 2.

n) is thus > 2a, and one checks whether
+1) —2(9—a), ie, 9(k+1) —2(9—a) >

(9 — m(d,n,a))Q(9, n) > 2(9—a). (15)

This inequality is checked for each n = 1, 2, 4, 5, 7, 8 and a with the same values. Sometimes certain
low k + 1 values have to be excluded for certain a values and one has to treat such cases separately.
The case n = 2 is trivial because m(9,2,a) = a and Q(9, 2) > 2.

For n = 1 one has {7,5,1,8,4,2}Q(9,1) > 2 - {8,7,5,4, 2, 1} (six separate inequalities for each
corresponding sequence entry on both sides). With Q(9, 1) > 19 (from P1 with exponent sum 1) this is
satisfied for each a.

For (9, 4) this becomes {4, 8, 7, 2, 1, 5} Q(9, 4) > 2 - {8, 7, 5, 4, 2, 1}, satisfied because Q(9, 4) > 4
(from P2 with exponent sum 2).

For Q(9, 5) = {P2s5(), P51(6)} one finds {5, 1,2, 7,8,4}Q(9,5) > 2- {8, 7,5, 4, 2, 1} with Q(9, 5) >
5 (from P5 with exponent sum 1). But now this does not hold for & > 1 and a = 2 because Q(9, 5) :if 14
for k + 1 = 5. In fact, P(9,2;4) = (—5)-4-13-22-31 and this is another instance where the first
number, here 5, is needed to complete the Q(9, 5) proof for £ + 1 = 5 from P5. All six inequalities are
satisfied for k + 1 > 23 (the next entry in Q(9, 5), also from P5 with exponent sum 1) without invoking
the first number 5 from P(9,2;4).

For Q(Q, 7) = {P24(6)’ P42(3)’ P52(6)a P71(3)} one has {1’ 2,4,5,7, 8} Q(ga 7) > 2 {8’ 7,5, 4,2, 1}
with Q(9, 7) > 7 (from P;). Here the case a = 1 is not satisfied for all relevant k, because 7 ;ﬁ 16.
Again, for kK + 1 = 7 one needs the first number 7 of P(9,1;6) = (=7)-2-11-20-29-38-47. The other
numbers in Q(9, 7) which are > 16 (from P2 with exponent sum 4) satisfy eq. (15).

For Q(9,8) = {P2s), P5s(), P8i(2)} one has {2, 4,8, 1,5 7} Q(9, 8) > 2 - {8, 7,5, 4,2, 1} with
Q(9, 8) > 8 (from P, with exponent sum 3). All inequalities are satisfied. O
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Table: {(2a)k*1},._; (modd)

d |al| {(2a)k*1},._; (modd) | denominators of z(d, a; k)

110 {repeat(0)} 1

2 |1 {repeat(0)} 1

311 {repeat(1,2)} A038500(k + 1)
2 {repeat(1)} A038500(k + 1)

4|1 {repeat(0)} 1
3 {repeat(0)} 1

511 {repeat(4, 3, 1, 2)} A060904(k + 1)
2 {repeat(1, 4)} A060904(k + 1)
3 {repeat(l)} A060904(k + 1)
4 {repeat(4, 2, 1, 3)} A060904(k + 1)

6 |1 {repeat(4, 2)} A038500(k + 1)
5 {repeat(4)} A038500(k + 1)

7|1 {repeat(4, 1, 2)} A268354(k + 1)
2 {repeat(2, 1, 4)} A268354(k + 1)
3 {repeat(1, 6)} A268354(k + 1)
4 {repeat(1)} A268354(k + 1)
5 || {repeat(2, 6, 4, 5, 1, 3)} A268354(k + 1)
6 || {repeat(4, 6, 2, 3,1, 5)} A268354(k + 1)

8 |1 {repeat(4, 0)} 1
3 {repeat(4, 0)} 1
5 {repeat(4, 0)} 1
7 {repeat(4, 0)} 1

9 |1 {repeat(4, 8, 7, 5, 1)} A038500(k + 1)
2 {repeat(7, 1, 4)} A038500(k + 1)
4 {repeat(1, 8)} A038500(k + 1)
5 {repeat(1)} A038500(k + 1)
7 || {repeat(7, 8,4, 2,1, 5)} A038500(k + 1)
8 {repeat(4, 1, 7)} A038500(k + 1)

10| 1| {repeat(4, S, 6, 2)} A060004(k + 1)
3 {repeat(6) A060904(k + 1)
7 {repeat(6, 4)} A060904(k + 1)
9 {repeat(4, 2, 6, 8)} A060904(k + 1)
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