Note on $\mathrm{a}-\mathrm{and} \mathrm{z}$-sequences of Sheffer number triangles for certain generalized Lah numbers

Wolfdieter L a $\mathrm{ng}{ }^{1}$

Abstract

The so-called $a-$ and z-sequences for Sheffer number triangles provide a recurrence for each entry in terms of those of the preceding row. The a - and z-sequences for the Sheffer triangles of the generalized $L a h$ numbers, called $L[d, a]$, are considered.

For each Sheffer number triangle $\mathbf{S}=(g(t), f(t))$ with exponential generating functions (e.g.f. s) $g(t)=\sum_{n=0}^{\infty} g_{k} \frac{t^{k}}{k!}$, where $g_{0}=1$, and $f(t)=t \hat{f}(t)$, with $\hat{f}(t)=\sum_{n=0}^{\infty} \hat{f}_{k} \frac{t^{k}}{k!}$, where $\hat{f}_{0} \neq 0$, one can give a recurrence for the entries of the first column of \mathbf{S}, in matrix notation $S(n, 0)$ in terms of maximal n entries of the preceding row, i.e.,

$$
\begin{equation*}
S(n, 0)=n \sum_{j=0}^{n-1} z_{j} S(n-1, j), \quad \text { for } n \geq 1, \quad \text { with } S(0,0)=1 \tag{1}
\end{equation*}
$$

where the z-sequence has e.g.f.

$$
\begin{equation*}
E z(y):=\sum_{j=0}^{\infty} z_{j} \frac{y^{j}}{j!}=\frac{1}{f^{[-1]}(y)}\left(1-\frac{1}{g\left(f^{[-1]}(y)\right)}\right) \tag{2}
\end{equation*}
$$

Here the compositional inverse of f is denoted by $f^{[-1]}$.
The recurrence for the other entries of the lower triangular (infinite demensional) Sheffer matrix \mathbf{S} is given by the a-sequence.

$$
\begin{equation*}
S(n, m)=\frac{n}{m} \sum_{j=0}^{n-m}\binom{m-1+j}{j} a_{j} S(n-1, m-1+j), \quad \text { for } n \geq 1, m \geq 1 \tag{3}
\end{equation*}
$$

with e.g.f.

$$
\begin{equation*}
E a(y):=\sum_{j=0}^{\infty} a_{j} \frac{y^{j}}{j!}=\frac{y}{f^{[-1]}(y)} \tag{4}
\end{equation*}
$$

For details see the W. Lang link [1], part 2, where also the references [5], [3], [6] are given, which, however, refer to the Riordan triangle case.

The generalized non-negative Lah number triangles $\mathbf{L}[d, a]$, with $d \in \mathbb{N}$ and $a=0$ if $d=1$, and $\operatorname{gcd}(d, a)=1$, i.e., $a \in R R S(d)$, the smallest positive restricted residue system modulo d, have been proposed in [2], section 2, C) 4. We do not repeat here the properties of these lower triangular (infinite dimensional) triangles $\mathbf{L}[d, a]$ as transition matrices between $[d, a]$-generalizations of certain rising and falling factorials but concentrate on the $a-$ and z-sequences.

[^0]The first instances are $\mathbf{L}[1,0]=\mathbf{L}=\underline{\text { A271703 }}, \mathbf{L}[2,1]=\underline{\text { A286724 }}, \mathbf{L}[3,1]=\underline{\text { A290596 }}, \mathbf{L}[3,2]=$ $\underline{\text { A290598, }} \mathbf{\mathbf { L } [4 , 1] =} \underline{\text { A290604 }}, \mathbf{L}[4,3]=\underline{\text { A292219 }}$.
The Sheffer structure is

$$
\begin{equation*}
\mathbf{L}[d, a]=\left(\frac{1}{(1-d t)^{\frac{2 a}{d}}}, \frac{t}{1-d t}\right) \tag{5}
\end{equation*}
$$

Thus the compositional inverse of f is

$$
\begin{equation*}
f^{[-1]}(y)=\frac{y}{1+d y} . \tag{6}
\end{equation*}
$$

The e.g.f. of the a-sequence is therefore $E a(d ; y)=1+d y$, with the sequence $a(d)=\{1, d$, repeat $(0)\}$. This means that the recurrence is always of the three term type (see also [2], eq. (143)):

$$
\begin{equation*}
L(d, a ; n, m)=\frac{n}{m} L(d, a ; n-1, m-1)+n d L(d, a ; n-1, m), \quad \text { for } n \in \mathbb{N}, m=1,2, \ldots, n \tag{7}
\end{equation*}
$$

As mentioned above this recurrence has to be used in connection wit the one from the z-sequence for the $m=0$ column, to be discussed now.
For the z-sequence the analysis becomes more involved. The e.g.f. is (see [2], eq. (142))

$$
\begin{align*}
E z(d, a ; y) & =(1+d y) \frac{1}{y}\left[1-\left(1-\frac{d y}{1+d y}\right)^{\frac{2 a}{d}}\right] \\
& =(1+d y) \frac{1}{y}\left[1-(1+d y)^{-\frac{2 a}{d}}\right] . \tag{8}
\end{align*}
$$

Lemma 1: Series $\operatorname{Ez}(\mathbf{d}, \mathbf{a} ; \mathbf{y})$

$$
\begin{align*}
E z(d, a ; y)= & 2 a+\sum_{k=1}^{\infty} \frac{y^{k}}{k!}(-1)^{k} Z(d, a ; k), \text { with } \\
& Z(d, a ; k)=\frac{1}{k+1} \prod_{j=0}^{k}(2 a+(j-1) d) . \tag{9}
\end{align*}
$$

Proof:

$$
\begin{align*}
& \frac{1}{y}\left[1-(1+d y)^{-\frac{2 a}{d}}\right]=\frac{1}{y}\left[1-\sum_{k=0}^{\infty}\left(\frac{2 a}{d}\right)^{\bar{k}} \frac{(-d y)^{k}}{k!}\right] \\
& =-\sum_{k=1}^{\infty}\left(\frac{2 a}{d}\right)^{\bar{k}}(-d)^{k} \frac{y^{k-1}}{k!}=\sum_{k=0}^{\infty}\left(\frac{2 a}{d}\right)^{\overline{k+1}} d^{k+1} \frac{(-1)^{k}}{k+1} \frac{y^{k}}{k!}, \tag{10}
\end{align*}
$$

with the rising factorial $x^{\bar{k}}:=\prod_{j=0}^{k-1}(x+j)$ if $k \in \mathbb{N}$, and $x^{\overline{0}}:=1$.
This has to be multiplied with $(1+d y)$ producing the leading term $2 a$, and the coefficient of $\frac{y^{k}}{k!}, k \geq 1$, becomes

$$
\begin{align*}
& \left(\frac{2 a}{d}\right)^{\overline{k+1}}(-1)^{k} \frac{d^{k+1}}{k+1}+d\left(\frac{2 a}{d}\right)^{\bar{k}}(-1)^{k-1} \frac{d^{k}}{k} k \\
& =(-1)^{k} \frac{1}{k+1} \prod_{j=0}^{k-1}(2 a+d j) \cdot[(2 a+d k)-d(k+1)]=\frac{(-1)^{k}}{k+1} \prod_{j=0}^{k}(2 a+d(j-1)) . \tag{11}
\end{align*}
$$

The $z(d, a)$ sequence has therefore the entries

$$
z(d, a ; k)= \begin{cases}2 a, & \text { for } k=0 \tag{12}\\ (-1)^{k} Z(d, a ; k), & \text { for } k \geq 1\end{cases}
$$

Examples:

1) $z(1,0 ; k)=0$, for $k \geq 0$.
2) $z(2,1 ; 0)=2, z(2,1 ; k)=0$, for $k \geq 1$.
3) $z[3,1]=\left\{2, \frac{2}{2},-\frac{2 \cdot 5}{3}, \frac{2 \cdot 5 \cdot 8}{4},-\frac{2 \cdot 5 \cdot 8 \cdot 11}{5}, \frac{2 \cdot 5 \cdot 8 \cdot 11 \cdot 14}{6}, \ldots\right\}=\left\{2,1,-\frac{10}{3}, 20,-176, \frac{6160}{3}, \ldots\right\}$.
4) $z[3,2]=\left\{4,-\frac{4}{2}, \frac{4 \cdot 7}{3},-\frac{4 \cdot 7 \cdot 10}{4}, \frac{4 \cdot 7 \cdot 10 \cdot 13}{5},-\frac{4 \cdot 7 \cdot 10 \cdot 13 \cdot 16}{6}, \ldots\right\}=\left\{4,-2, \frac{28}{3},-70,728,-\frac{29120}{3}, \ldots\right\}$.
5) $z[4,1]=\left\{2, \frac{2 \cdot 2}{2},-\frac{2 \cdot 2 \cdot 6}{3}, \frac{2 \cdot 2 \cdot 6 \cdot 10}{4},-\frac{2 \cdot 2 \cdot 6 \cdot 10 \cdot 14}{5} \frac{2 \cdot 2 \cdot 6 \cdot 10 \cdot 14 \cdot 18}{6}, \ldots\right\}$
$=\{2,2,-8,60,-672,10080, \ldots\}=2 *\{1,1,-4,30,-336,5040, \ldots\}$.
6) $z[4,3]=\left\{6,-\frac{2 \cdot 6}{2}, \frac{2 \cdot 6 \cdot 10}{3},-\frac{2 \cdot 6 \cdot 10 \cdot 14}{4}, \frac{2 \cdot 6 \cdot 10 \cdot 14 \cdot 18}{5},-\frac{2 \cdot 6 \cdot 10 \cdot 14 \cdot 18 \cdot 22}{6}, \ldots\right\}$

$$
=\{6,-6,40,-420,6048,-110880, \ldots\}=2 *\{3,-3,20,-210,3024,-55440, \ldots\}
$$

The third and fourth example shows that some entries become fractional, with powers of 3 in the denominator.
See the instances $z(3,1 ; k)=\underline{A 290599}(k) / \underline{A 038500}(k+1), z(3,2 ; k)=\underline{A 290603}(k) / \underline{A 038500}(k+1)$, $z(4,1 ; k)=2 * \underline{A 292220}(k)$ and $z(4,3 ; k)=2 * \underline{\text { A } 292221}(k)$.
The question is for which $k+1$ values, with $k \geq 1, z(d, a ; k)$ (in lowest terms) is fractional, i.e., which $k+1$ values do not divide the numerator

$$
\begin{align*}
N(z(d, a ; k)) & =(-1)^{k} \prod_{j=0}^{k}(2 a+(j-1) d)=:(-1)^{k} P(d, a ; k) \tag{13}\\
& =(-1)^{k} \operatorname{sign}(2 a-d)|d-2 a| \prod_{j=1}^{k}(2 a+(j-1) d) \tag{14}
\end{align*}
$$

For this analysis we state two trivial Lemmata.

Lemma 2:

The product $P(d, a ; k)$ has all numbers $2 a(\bmod d)$ from the interval $\left[2 a, P_{\max }(d, a ; k)\right]$, with $P_{\max }(d, a ; k):=2 a+(k-1) d=d(k+1)-2(d-a)$ as factors. In addition the (sometimes negative or vanishing) number $2 a-d$ is a factor.
This is obvious from the definition of $P(d, a ; k)$ in eq. (14).
The number $|d-2 a|$ (0 only for $d=2$ because $\operatorname{gcd}(d, a)=1$) will be called 'the first number' in $P(d, a ; k)$ (even if $\operatorname{sign}(2 a-d)$ is negative). Note that if $2 a-d$ is not positive then this first number $d-2 a$ is congruent to $2 a$ modulo d only for $[d, a]=[1,0],[2,1]$ or $[4,1]$.

Corollary 1: Even d, factors

If $d=2 D, D \in \mathbb{N}$, then $P(2 D, a ; k)$ has all numbers $a(\bmod D)$ from the interval $\left[a, \bar{P}_{\max }(2 D, a ; k)\right]$, with $\bar{P}_{\max }(2 D, a ; k):=a+(k-1) D=D(k+1)-2 D+a$ as factors. In addition there is a negative factor $-2^{k+1}(D-a)$. The first (positive) number is then $2^{k+1}(D-a)$.

Lemma 3:

$P(d, a ; k) \equiv(2 a)^{k+1}(\bmod d), \quad$ for $k \geq 1$.
This is also clear because $P(d, a ; k)$ has $k+1$ factors, each $2 a(\bmod d)$.

Corollary 2: Even d, congruence

For $d=2 D, D \in \mathbb{N}, \bar{P}(2 D, a ; k):=\frac{P(2 D, a ; k)}{2^{k+1}} \equiv a^{k+1}(\bmod D)$ for $k \geq 1$.
To find out which numbers appear in the denominators of $z(d, a ; k)$, for $k \geq 1$, one looks first at the power sequence $\left\{(2 a)^{k+1}\right\}_{k>=1}(\bmod d)$. Such modular power sequences always become (or are already) periodic because the sequence has more than d terms, but there are only d possible values from $R S_{>}(d)$ (the smallest non-negative residue system modulo d). See the Table for $d=1, \ldots, 10$, and the restricted a values.
Proposition 1: Denominators of $z(3, a ; k)$
$\mathrm{z}(3, \mathrm{a} ; \mathrm{k})$ has for $a=1,2$ the denominator (in lowest terms) $\underline{\mathrm{A} 038500(k+1) \text { for } k \geq 0 \text {, i.e., the highest }}$ power of 3 in $k+1$.

Proof:

For $k=0$ this is trivial; the denominator is 1 .
i) In the cases $[d, a]=[3,1]$ and $[3,2]$ it is clear that 3 cannot divide $P(3,1 ; k)$ for $k \geq 1$, because $P(3,1 ; k) \equiv 12(\bmod 3)$ depending on the parity of k. The same holds for $P(3,2 ; k) \equiv 1(\bmod 3)$. Therefore, in the prime factorization of $k+1$ one can separate the powers of the prime 3 which will never divide $P(3, a ; k)$, hence $\operatorname{Num}(z(3, a ; k))$, for $a=1,2$. This explains why the denominator of $z(3, a ; k)$ has certainly a factor $\mathrm{A} 038500(k+1)$, the highest power of 3 in $k+1$. But at this stage of the argument there could remain more factors of $k+1$ in the denominator.
ii) Therefore one has to show that powers of primes congruent to 1 or 2 modulo 3 of $k+1$ always divide $P(3, a ; k)$. For this we consider the factorization $\overline{k+1}=\frac{k+1}{3^{33}}=\prod_{j=1}^{M 1} p_{1, j}^{e 1, j} \prod_{j=1}^{M 2} p_{2, j}^{e 2, j}=P 1 \cdot P 2$, with $P 1 \equiv 1(\bmod 3)$ the product from powers of prime $1(\bmod 3)(\underline{A 002476})$, and $P 2$ the product from powers of primes $2(\bmod 3)(\underline{\text { A } 003627})$. $P 2$ is $\equiv 1(\bmod 3)$ or $\equiv 2(\bmod 3)$ if $\sum_{j=1}^{M 2} e_{2, j}$ is even or odd, respectively. We omit the arguments (d) of the factors Pi.
If $d=3, a=1$ Lemma 2 shows that all numbers $2(\bmod 3)$ from 2 to $P_{\max }(3,1 ; k)=(k+1)+2(k-1)=$ $3(k+1)-4$ appear as factors in $P(3,1 ; k)$. Therefore in the second case, when $P 2=2(\bmod 3)$, we show that $P 2 \leq 3(k+1)-4$. This is clear because $3(k+1)-4 \geq 3 \overline{k+1}-4 \geq 3 P 2-4 \geq P 2$, i.e., $2 P 2 \geq 2$. which is trivial because $P 2 \geq 2$.

In the first case, when $P 2=1(\bmod 3)$, this number $P 2$ will be shown to appear as a factor in $P(3,1 ; k)$ as the $2(\bmod 3)$ number $2 \cdot P 2$. Namely $P_{\max }(3,1 ; k)=3(k+1)-4 \geq 3 \overline{k+1}-4 \geq 3 P 2-4 \geq 2 \cdot P 2$, i.e., $P 2 \geq$. This is trivial because the smallest prime in $P 2$ is 2 and the exponent sum is now even, hence $P 2 \geq 4$.
For $P 1$ one also shows that the $2(\bmod 3)$ number $2 \cdot P 1$ is always a factor of $P(3,1 ; k)$ because, as above, this reduces to $P 1 \stackrel{!}{\geq} 4$ which is trivial because the smallest prime in $P 1$ is 7 . This concludes the proof for $a=1$.
iii) If $a=2$ then all numbers congruent to 1 modulo 4 from 4 to $P_{\max }(3,2 ; k)=3(k+1)-2$ appear in $P(3,2 ; k)$, and one can proceed as above. If $P 2=2(\bmod 3)$ one shows that the $1(\bmod 3)$ number $2 P 2$ is smaller than $3(k+1)-2$. This results in the trivial inequality $P 2 \geq 2$. In the other case for which $P 2=$ $1(\bmod 3)$ this reduces to the inequality $2 P 2 \geq 2$. The same appears for $P 1: 2 P 1 \geq 2$ is satisfied because $P 1 \geq 7$.

This method can now be generalized to higher $[d, a]$ cases. Observe that in the proof we did not use the first number in $P(d, a ; k)$. It will turn out that in general also this number will have to be used for small numbers $k+1$ for certain a values.

Proposition 2: Integer sequences $\{\mathbf{z}(4, a ; k)\}_{\mathbf{k} \geq 0}$

The denominators of $z(4, a ; k)$ (in lowest terms) are for $a=1,3$ always 1. (This holds also for the not considered case $a=2$, with $z(4,2 ; 0)=4$, and $z(4,2 ; k)=0$, for $k \geq 1$.)

Proof:

For $k=0$ this is clear: $z(4, a ; 0)=2 a$.
$P(4, a ; k) \equiv 0(\bmod 4), k \geq 1$, for $a=1$ and $3(\operatorname{Lemma} 3)$. Also $\bar{P}(4, a ; k) \equiv 1(\bmod 2)$ for these a values (Corollary 1).
Each of the three prime power factors of $k+1=P 1 \cdot P 2 \cdot P 3$ (powers of primes modulo 4) can be shown to be a factor of $P(4, a ; k)$. There is no $P 0$ and $P 2=2^{e 2}$. $P_{\max }(4,1 ; k)=4(k+1)-6$ or $P_{\max }(4,3 ; k)=4(k+1)-2$, and $\bar{P}_{\max }(4, a ; k)=2(k+1)-4+a$ for the odd numbers in $\bar{P}(4, a ; k)$. For $P 2=2^{e 2}$ this is trivial, because $P(4, a ; k)$ has at least the factors 2^{k+1}, and $2^{k+1} \geq 2^{2^{e 2}} \geq 2^{e 2}$.
Here the above used procedure will not work for for 2 in $P 2 \equiv 2(\bmod 4)$, the odd exponent sum case, for all $k \geq 1$ if $a=1$. But for this 2 the first number of $P(4,1 ; k)$ namely $|4-2|=2$ comes to help, for $k=1$. This standard procedure would run as follows. $P 2 \equiv 2(\bmod 4)$ or $\equiv 0(\bmod 4)$, therefore we look for $2 P 2$ or $P 2$, respectively, in $P(4, a ; k) \equiv 0(\bmod 4)$. This leads in the first case, with odd exponent sum of $P 2$, to $2 P 2 \geq 6$ or ≥ 2 for $a=1$ or $a=3$, respectively, and in the other case to $3 P 2 \geq 6$ or ≥ 2. Because in the first case $P 2 \geq 2$ the case $a=1$ is not satisfied. In the second case, with $P 2 \geq 4$, there is no problem. Thus one has to treat for $a=1$ the case $k+1=2$ separately, using the first number 2 in $P(4,1 ; 1)$, as announced.
$P 1$, the powers of primes $\equiv 1(\bmod 4)(\underline{A 002144})$, and $P 3$, the powers of primes $\equiv 3(\bmod 4)$ ($\underline{\text { A002145 }}$), are both $\equiv 1(\bmod 2)($ odd $)$. Now one looks for $P 1$ and $P 3$ in $\bar{P}(4, a ; k) \equiv 1(\bmod 2)$. This is successful because $\bar{P}_{\max }(4, a ; k) \geq 2(k+1)-4+a \geq 2 P i-4+a$, and one proves $2 P i-4+a \geq P i$, for $i=1,3$. For $a=1$ and $a=3$ this becomes $P i \geq 3$ and $P i \geq 1$, respectively. This is trivial for both $P i$ because they are are ≥ 5 or ≥ 3 for $i=1$ or 3 , respectively.

To finish we discuss the case $d=9$ in order to explain the general procedure in a more involved show piece.
Proposition 3: $\{\mathbf{z}(\mathbf{9}, \mathbf{a} ; \mathbf{k})\}_{\mathbf{k} \geq \mathbf{0}}$
The denominators of $z(9, a ; k)$ for $a=1,2,4,5,7,8$ are all $\underline{\text { A } 038500}(k+1)$, the highest power of 3 in $k+1$.

Proof

(i) $P(9, a ; k)$ cannot have a divisor 3 because otherwise (from Lemma 3$)(2 a)^{k+1} \equiv 0(\bmod 3)$, due to $P(9, a ; k)=(2 a)^{k+1}+9 K=3 L$ with integers K and L. This means that $a^{k+1} \equiv 0(\bmod 3)$, which implies that 3 has to divide a, contradicting $\operatorname{gcd}(9, a)=1$. (In passing: the sequences $\{z(9, a ; k)\}_{k>=0}$ for $a=3$ and $a=6$ are integer ones.). Thus the factor $P 3=3^{e 3}$ in the prime number factorization of $k+1$ can never divide $P(9, a ; k)$, and this highest power of 3 in $k+1$ certainly remains in the denominator of $z(9, a ; k)$.
As above one has to show that each of the other factors in $k+1$, i.e., $P 1 \cdot P 2 \cdot P 4 \cdot P 5 \cdot P 7 \cdot P 8$, divide $P(9, a ; k)$ (whose modulo 9 congruence property depends on a (see the Table)). $P 6$ is not present. For these prime sequences see $\underline{A 061237}, \underline{A 061238}, \underline{A 061239}, \underline{A 061240}, \underline{A 061241}, \underline{A 061242}$.
$P_{\max }(9, a ; k)=9(k+1)-2(9-a)$, and the proofs first check the standard estimates like above.
(ii) Each factor $P i$ is analysed for the possible $\bmod 9$ subfactors. $P 1 \equiv 1(\bmod 9), P 2 \equiv 2,4,8,7,5,1$ $(\bmod 9), P 4 \equiv 4,7,1(\bmod 9), P 5 \equiv 5,7,8,4,2,1(\bmod 9), P 7 \equiv 7,4,1(\bmod 9), P 8 \equiv 8,1$ $(\bmod 9)$. For each case the sum of the exponents of the relevant primes mod 9 satisfy a certain congruence condition with the modulus given by the period of $\left\{i^{q}\right\}_{q \geq 1}$ for Pi. E.g., if in $k+1$ the factor $P 2 \equiv 7$ $(\bmod 9)$ then $\sum_{j=1}^{M 2} e 2 j=4(\bmod 6)$. This subfactor of $P 2$ will be abbreviated as $P 2_{4(6)}$.
(iii) Let each specific $n(\bmod 9)$ instance of these $P i$ sub-factors be collected in $Q(9, n)$. E.g., $Q(9,4)=\left\{P 2_{2(6)}, P 4_{1(3)}, P 5_{4(6)}, P 7_{2(3)}\right\}$, with the index giving the sum of the exponents modulo the periods in bracket. Each $Q(9, n)$ is treated as a representative for its $P i$ sub-factors for all possible a values. A number $m(9, n, a)$ is determined such that $m(9, n, a) Q(9, n) \equiv 2 a(\bmod 9)$. Thus $Q(9,2)=$ $\left\{P 2_{1(6)}, P 5_{2(6)}\right\}$ is multiplied by $m(9,2, a)=a . Q(9,1)=\left\{P 1, P 2_{6(6)}, P 4_{3(3)}, P 5_{6(6)}, P 7_{3(3)}, P 8_{2(2)}\right\}$ is multiplied by $m(9,1, a)=2 a(\bmod 9)$, i.e., $2,4,8,1,5,7 . Q(9,4)$ needs $m(9,4, a)=5,1,2,7,8,4$, for the relevant rising $2 a$ values. $Q(9,5)$ needs $m(9,5, a)=4,8,7,2,1,5 . Q(9,7)$ needs $m(9,7, a)=$ $8,7,5,4,2,1$, and $Q(9,8)$ needs $m(9,8, a)=7,5,1,8,4,2$.
(iv) Each of these $2 a(\bmod 9)$ numbers $m(9, n, a) Q(9, n)$ is thus $\geq 2 a$, and one checks whether $m(9, n, a) Q(9, n) \leq P_{\max }(9, a ; k)$ with $P_{\max }(9, a ; k)=9(k+1)-2(9-a)$, i.e., $9(k+1)-2(9-a) \geq$ $9 Q(9, n)-2(9-a) \geq m(d, n, a) Q(9, n)$.

$$
\begin{equation*}
(9-m(d, n, a)) Q(9, n) \geq 2(9-a) . \tag{15}
\end{equation*}
$$

This inequality is checked for each $n=1,2,4,5,7,8$ and a with the same values. Sometimes certain low $k+1$ values have to be excluded for certain a values and one has to treat such cases separately.
The case $n=2$ is trivial because $m(9,2, a)=a$ and $Q(9,2) \geq 2$.
For $n=1$ one has $\{7,5,1,8,4,2\} Q(9,1) \geq 2 \cdot\{8,7,5,4,2,1\}$ (six separate inequalities for each corresponding sequence entry on both sides). With $Q(9,1) \geq 19$ (from P1 with exponent sum 1) this is satisfied for each a.
For $Q(9,4)$ this becomes $\{4,8,7,2,1,5\} Q(9,4) \geq 2 \cdot\{8,7,5,4,2,1\}$, satisfied because $Q(9,4) \geq 4$ (from $P 2$ with exponent sum 2).
For $Q(9,5)=\left\{P 2_{5(6)}, P 5_{1(6)}\right\}$ one finds $\{5,1,2,7,8,4\} Q(9,5) \geq 2 \cdot\{8,7,5,4,2,1\}$ with $Q(9,5) \geq$ 5 (from $P 5$ with exponent sum 1). But now this does not hold for $k \geq 1$ and $a=2$ because $Q(9,5) \not \equiv 14$ for $k+1=5$. In fact, $P(9,2 ; 4)=(-5) \cdot 4 \cdot 13 \cdot 22 \cdot 31$ and this is another instance where the first number, here 5 , is needed to complete the $Q(9,5)$ proof for $k+1=5$ from $P 5$. All six inequalities are satisfied for $k+1 \geq 23$ (the next entry in $Q(9,5)$, also from $P 5$ with exponent sum 1) without invoking the first number 5 from $P(9,2 ; 4)$.
For $Q(9,7)=\left\{P 2_{4(6)}, P 4_{2(3)}, P 5_{2(6)}, P 7_{1(3)}\right\}$ one has $\{1,2,4,5,7,8\} Q(9,7) \geq 2 \cdot\{8,7,5,4,2,1\}$ with $Q(9,7) \geq 7\left(\right.$ from $\left.P_{7}\right)$. Here the case $a=1$ is not satisfied for all relevant k, because $7 \not \equiv 16$. Again, for $k+1=7$ one needs the first number 7 of $P(9,1 ; 6)=(-7) \cdot 2 \cdot 11 \cdot 20 \cdot 29 \cdot 38 \cdot 47$. The other numbers in $Q(9,7)$ which are ≥ 16 (from $P 2$ with exponent sum 4) satisfy eq. (15).
For $Q(9,8)=\left\{P 2_{3(6)}, P 5_{3(6)}, P 8_{1(2)}\right\}$ one has $\{2,4,8,1,5,7\} Q(9,8) \geq 2 \cdot\{8,7,5,4,2,1\}$ with $Q(9,8) \geq 8$ (from P_{2} with exponent sum 3). All inequalities are satisfied.

References

[1] Wolfdieter Lang, Sheffer a - and z-sequences, https://oeis.org/A006232/a006232.pdf.
[2] Wolfdieter Lang, Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, http://arXiv.org/abs/1707.04451, arXiv:math/1707.04451 [math.NT], July 2017, also as a link under https://oeis.org/A282629.
[3] D. Merlini, D.G. Rogers, R. Sprugnoli and M.C. Verri, On some alternative characterizations of Riordan arrays, Can. J. Math, 49(1997)301-320.
[4] The On-Line Encyclopedia of Integer Sequences (2010), published electronically at http://oeis.org.
[5] D.G. Rogers, Pascal Triangles, Catalan Numbers and Renewal Arrays, Discrete Math. 22(1978)301310.
[6] R.Sprugnoli, Riordan arrays and combinatorial sums, Discrete Math. 132(1994)267-290.

2010 Mathematics Subject Classification: Primary 11A07, 11B37, Secondary 11C08, 11C20
Keywords: Lah numbers, Sheffer number triangles, recurrences, modulur arithmetic.

OEIS [4] A-numbers:
$\underline{\mathrm{A} 002144}, \underline{\mathrm{~A} 002145}, \underline{\mathrm{~A} 002476}, \underline{\mathrm{~A} 003627}, \underline{\mathrm{~A} 038500}, \underline{\mathrm{~A} 061237}, \underline{\mathrm{~A} 061238}, \underline{\mathrm{~A} 061239}, \underline{\mathrm{~A} 061240}, \underline{\mathrm{~A} 061241}, \underline{\mathrm{~A} 061242}$, $\underline{A 271703}, \underline{A 286724}, \underline{A 290596}, \underline{A 290598}, \underline{A 290599}, \underline{A 290603}, \underline{\text { A290604 }}, \underline{\text { A292219 }}, \underline{\text { A292220 }}, \underline{\text { A292221. }}$

Table: $\left\{(\mathbf{2 a})^{\mathbf{k}+1}\right\}_{k>=1}(\bmod d)$

d	a	$\left\{(\mathbf{2 a})^{\mathbf{k}+\mathbf{1}}\right\}_{\mathbf{k}>=\mathbf{1}}(\bmod d)$	denominators of $\mathbf{z}(\mathbf{d}, \mathrm{a} ; \mathrm{k})$
1	0	\{repeat(0)\}	1
2	1	\{repeat(0)\}	1
3	1	\{repeat(1,2)\}	$\underline{\mathrm{A} 038500}(k+1)$
	2	\{repeat(1)\}	A038500($k+1$)
4	1	\{repeat(0) \}	
	3	\{repeat(0)\}	1
5	1	$\{r$ repeat(4, 3, 1, 2) $\}$	A060904 (k + 1)
	2	\{repeat(1, 4) \}	A060904 ($k+1$)
	3	\{repeat(1)\}	$\underline{\mathrm{A} 060904}(k+1)$
	4	\{repeat(4, 2, 1, 3) \}	A060904 (k + 1)
6	1	$\{$ repeat(4, 2) \}	A038500 ($k+1$)
	5	\{repeat(4)\}	$\underline{\text { A038500 }}(k+1)$
7	1	\{repeat(4, 1, 2) \}	$\underline{\text { A268354 }}(k+1)$
	2	$\{$ repeat(2, 1, 4) \}	A268354 (k + 1)
	3	$\{$ repeat(1, 6) \}	A268354 ($k+1$)
	4	\{repeat(1)\}	A268354 (k + 1)
	5	\{repeat(2, 6, 4, 5, 1, 3) \}	A268354 $(k+1)$
	6	$\{$ repeat(4, 6, 2, 3, 1, 5) \}	A268354($k+1$)
8	1	$\{r$ reat $(4,0)\}$	1
	3	$\{$ repeat(4, 0) \}	1
	5	$\{$ repeat(4, 0) \}	1
	7	$\{r \mathrm{repeat}(4,0)\}$	1
9	1	\{repeat(4, 8, 7, 5, 1) \}	$\underline{\text { A038500 }}(k+1)$
	2	\{repeat(7, 1, 4) \}	$\underline{\mathrm{A} 038500}(k+1)$
	4	$\{$ repeat (1, 8) \}	$\underline{\mathrm{A} 038500}(k+1)$
	5	\{repeat(1)\}	$\underline{\mathrm{A} 038500}(k+1)$
	7	$\{\operatorname{repeat}(7,8,4,2,1,5)\}$	A038500 ($k+1$)
	8	\{repeat(4, 1, 7) \}	A038500 ($k+1$)
10	1	$\{$ repeat(4, 8, 6, 2) \}	$\underline{\mathrm{A} 060904}(k+1)$
	3	\{repeat(6)\}	A060904 ($k+1$)
	7	\{repeat(6, 4) \}	A060904 (k + 1)
	9	$\{$ repeat(4, 2, 6, 8) \}	$\underline{\text { A060904 }}$ (k + 1)

[^0]: ${ }^{1}$ wolfdieter.lang@partner.kit.edu, http://www.itp.kit.edu/~wl

