Collatz Trees from Vaillant-Delarue Maps

Wolfdieter Lang ${ }^{1}$

1) The Vaillant-Delarue [1] function $f_{\mathrm{s}}: \mathbb{O} \rightarrow \mathbb{O}, 2 m+1 \mapsto f_{\mathcal{s}}(2 m+1)=: a(m)$, for $m \in \mathbb{N}_{0}$, s with the positive odd numbers \mathbb{O}, is defined by (in [1] f_{s} is named f_{s})

$$
a(m)=f(2 m+1):= \begin{cases}\frac{2+3 m}{2} & \text { if } m \equiv 0(\bmod 4), \tag{1}\\ 2+3 m & \text { if } m \equiv 1 \operatorname{or} 3(\bmod 4), \\ \frac{m}{2} & \text { if } m \equiv 2(\bmod 4)\end{cases}
$$

This sequence is given in OEIS [2] as A324036(m).
The levels of the corresponding tree CfsTree are given by the sets $S(l)$ defined recursively by

$$
\begin{align*}
S(0) & =\{1\} \\
S(1) & =\{5\} \\
S(l) & =\{o \in \mathbb{O} \mid f \mathbb{f}(o) \in S(l-1)\}, \text { for } l=2,3, \ldots \tag{2}
\end{align*}
$$

Collatz Tree for Vaillant-Dellarue fs-function CfsTree ${ }_{7}$

The indices indicate the congruence classes modulo 6 of the vertex labels. The out-degree of each vertex $3(\bmod 6)$ is 1 , the other vertices have out-degree 2 . The branches are not depicted but should be clear from the positions of the labels. See also Figure 1 of [1].
The number of vertices on level l is $L(l)=2 L(l-1)-L_{3}(l-1)$, for $l=2,3, \ldots$, with L_{3} the number of vertices with klables congruent to 3 modulo 6 , and $L(0)=1=L(1)$. The list of $L(l)$, for $l=0,1, \ldots, 20$ is (see A324039):

$$
\begin{equation*}
[1,1,2,2,4,8,11,19,31,50,88,146,241,407,675,1118,1871,3102,5175,8633,14394] . \tag{3}
\end{equation*}
$$

[^0]The number $L_{3}(l)$, for $l=0,1, \ldots, 20$, is given by (see A324040):

$$
\begin{equation*}
[0,0,2,0,0,5,3,7,12,12,30,51,75,139,232,365,640,1029,1717,2872,4789] . \tag{4}
\end{equation*}
$$

For $m \in S(l) \rightarrow m^{\prime} \in S(l+1)$ the successor formula is, for $l=1,2, \ldots,(m$ is here odd and not m from eq. (1))

$$
m^{\prime}(m):= \begin{cases}4 m+1 & \text { if } m \equiv 3(\bmod 6), \tag{5}\\ \frac{4 m-1}{3} \text { and } 4 m+1 & \text { if } m \equiv 1(\bmod 6), \\ \frac{2 m^{3}}{3} \text { and } 4 m+1 & \text { if } m \equiv 5(\bmod 6) .\end{cases}
$$

Note that 1_{1} does not obey this rule, The rule would lead to level $S(l)=\left\{1_{1}, 5_{5}\right\}$ which would imply a duplication of the tree.
The rephrased Collatz conjecture for the tree CfsTree is:

$$
\begin{equation*}
\forall o \in \mathbb{O} \exists l \in \mathbb{N}_{0}: o \in S(l) \tag{6}
\end{equation*}
$$

Because the level sets $S(l)$ and $S\left(l^{\prime}\right)$ satisfy $S(l) \cap S\left(l^{\prime}\right)=\emptyset$ for $l \neq l^{\prime}$ the \exists symbol in the conjecture can be replaced by the a unique \exists_{1} symbol.
The conjecture means then that CfsTree gives a permutation of \mathbb{O} when read level by level.
For the CfsTree see A324038.
The successor formula eq. (5) leads to nine rules $S s(i, j ; D)$ with i and j from $\{1,3,5\}$ for the residue classes modulo 6 for $m \in S(l)$ and $m^{\prime} \in S(l+1)$, respectively, for $l \in \mathbb{N}$, and $D \in\{l, r, v\}$ for the downwards directions left, right, vertical. The notation $m=(a, b)$ and $m^{\prime}=(c, d)$ means that from $m=a+K b$ follows $m^{\prime}=c+K d$ for $K \in \mathbb{N}_{0}$.

$$
\begin{array}{ll}
S s(1,1 ; r): & m=(1,18) \xrightarrow{r} \quad m^{\prime}=(1,24)(\equiv 1(\bmod 6)), \\
S s(1,3 ; r): & m=(7,18) \xrightarrow{r} \\
S s(1,5 ; r): & m^{\prime}=(9,24)(\equiv 3(\bmod 6)), \\
S s(1,5 ; l): & m=(13,18) \xrightarrow{r} \\
& m^{\prime}=(17,24)(\equiv 5(\bmod 6)), \tag{7}\\
S s(3,1 ; v): & m=(3,6) \quad m^{\prime}=(5,24)(\equiv 5(\bmod 6)), \\
& \\
S s(5,1 ; r): & m=(11,18) \xrightarrow{r} \quad m^{\prime}=(13,24)(\equiv 1(\bmod 6)), \\
S s(5,3 ; r): & m=(5,18) \xrightarrow{r} \quad m^{\prime}=(3,12)(\equiv 1(\bmod 6)), \\
S s(5,5 ; r): & m=(17,18) \xrightarrow{r} m^{\prime}=(11,12)(\equiv 5(\bmod 6)), \\
S s(5,5 ; l): & m=(5,6) \xrightarrow[l]{l} \quad m^{\prime}=(21,24)(\equiv 5(\bmod 6)) .
\end{array}
$$

Because $m=1 \in A(0)$ is not considered for these rules, $K \geq 1$ for $S s(1,1 ; r)$ and $S s(1,5 ; l)$.
$S s(1,3 ; r)$ is always followed by $S s(3,1 ; v)$, hence $m=(7,18) \xrightarrow{\square r v} m^{\prime \prime}=(37,96)$.
$S s(5,3 ; r)$ is always followed by $S s(3,1 ; v)$, hence $m=(5,18) \xrightarrow{r v} m^{\prime \prime}=(13,48)$.

Examples:

1) $S s(1,1 ; r)$ with $K=1: m=19_{1} \in S(8) \xrightarrow{r} m^{\prime}=25_{1} \in S(9)$ with a downwards right branch.
2) $S(1,3 ; r)$ with $K=0: m=7_{1} \in S(6) \quad \xrightarrow{r} \quad m^{\prime}=9_{3} \in S(7)$.
3) $S(5,5 ; l)$ with $K=1: m=11_{5} \in S(5) \xrightarrow{l} \quad m^{\prime}=45_{3} \in S(6)$.
4) $S(1,3 ; r)$ then $S(3,1 ; v)$, with $K=1: m=25_{1} \in S(9) \xrightarrow{r v} \quad m^{\prime \prime}=133_{1} \in S(11)$.

For the CfsTree there are also nine rules for the predecessors $m \in S(l)$ of $m^{\prime} \in S(l+1)$, for $l=1,2, \ldots$. They are denoted by $\operatorname{Ps}(i, j ; D)$, with i and j from $\{1,3,5\}$ for the residue classes modulo 6 of odd m^{\prime}
and odd m, respectively, and $D \in\{l, r, v\}$ gives the respectively upward left, right, vertical direction of the (not depicted) branches. The notation $m^{\prime}=(a, b)$ from $m=(c, d)$ means that if $m^{\prime}=a+b K$ then $m=c+d K$ for $K \in \mathbb{N}_{0}$, as long as $m^{\prime} \geq 5$.

$$
\begin{array}{ll}
P s(1,1 ; r): & m^{\prime}=(1,24) \text { from } m=(1,18)(\equiv 1(\bmod 6)), \\
P s(1,3 ; v): & m^{\prime}=(13,24) \text { from } m=(3,6)(\equiv 3(\bmod 6)), \\
P s(1,5 ; r): & m^{\prime}=(7,12) \text { from } m=(11,18)(\equiv 5(\bmod 6)), \\
P s(3,1 ; r): & m^{\prime}=(9,24) \text { from } m=(7,18)(\equiv 1(\bmod 6)), \\
\operatorname{Ps}(3,5 ; l): & m^{\prime}=(21,24) \text { from } m=(5,6)(\equiv 5(\bmod 6)), \\
\operatorname{Ps}(3,5 ; r): & m^{\prime}=(3,12) \text { from } m=(5,18)(\equiv 5(\bmod 6)), \\
P s(5,1 ; l): & m^{\prime}=(5,24) \text { from } m=(1,6)(\equiv 1(\bmod 6)), \\
P s(5,1 ; r): & m^{\prime}=(17,24) \text { from } m=(13,18)(\equiv 1(\bmod 6)), \\
P s(5,5 ; r): & m^{\prime}=(11,12) \text { from } m=(17,18)(\equiv 5(\bmod 6)) . \tag{9}
\end{array}
$$

In $P s(1,1 ; r) K \geq 1$ because $l \geq 1$, hence $m^{\prime} \geq 5$.
If also level $l=0$ is considered then there is an exception for $\operatorname{Ps}(5,1 ; l)$ for $m^{\prime}=5(K=0)$ because the upwards direction to 1 from 5 is vertical (v), not left (1).

Examples:

1) $P s(1,1 ; r)$ with $K=1: m^{\prime}=25_{1} \in S(9)$ from $m=19_{1} \in S(8)$, upwards to the right direction.
2) $P s(3,1 ; r)$ with $K=0: m^{\prime}=9_{3} \in S(7)$ from $m=7_{1} \in S(6)$, upwards to the right direction.
3) $P s(5,5 ; r)$ with $K=0: m^{\prime}=11_{5} \in S(5)$ from $m=17_{5} \in S(4)$,upwards to the right direction.
4) The Vaillant-Delarue function $f:=\mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ is defined by

$$
f(m):= \begin{cases}\frac{3 m+1}{} & \text { if } m \equiv 1(\bmod 2), \tag{10}\\ \frac{3 m^{2}}{4} & \text { if } m \equiv 0(\bmod 4), \\ \frac{m^{2}-2}{4} & \text { if } m \equiv 2(\bmod 4) .\end{cases}
$$

This function is given in A324245.
The levels of the tree CfTree are given by the set $A(l)$ defined recursively by

$$
\begin{align*}
A(0) & =\{0\} \\
A(1) & =\{2\} \\
A(l) & =\left\{m \in \mathbb{N}_{0} \mid f(m) \in A(l-1)\right\}, \text { for } l=2,3, \ldots \tag{11}
\end{align*}
$$

The indices indicate the congruence classes modulo 3. See also Figure 2 of [1].
The out-degree of each vertex with a label $1(\bmod 3)$ is 1 , the other vertices have out-degree 2 . The number of vertices on level l is $L(l)=2 L(l-1)-L_{1}(l-1)$, for $l=2,3, \ldots$, with L_{1} the number of vertices with labels congruent to 1 modulo 3 , and $L(0)=1=L(1)$. The list of $L(l)$, for $l=0,1, \ldots, 20$ has been given above. The number $L_{1}(l)=L_{3}(l)$ from above.
For $m \in A(l) \rightarrow m^{\prime} \in A(l+1)$ the successor formula is, for $l=1,2, \ldots$,

$$
m^{\prime}(m):= \begin{cases}2(2 m+1) & \text { if } m \equiv 1(\bmod 3) \tag{12}\\ \frac{2 m-1}{3} \text { and } 2(2 m+1) & \text { if } m \equiv 2(\bmod 3) \\ \frac{4 m}{3} \text { and } 2(2 m+1) & \text { if } m \equiv 0(\bmod 3)\end{cases}
$$

Note that 0_{0} does not obey this rule. The rule would lead to level $A(1)=\left\{0_{0}, 2_{2}\right\}$ and a duplication of the tree would be present.
Therefore we omit in the following level $l=0$, i.e., the entry 0_{0}, and consider the tree starting with 2_{2} on level $l=1$.

The rephrased Collatz conjecture for the tree CfTree (for $l \geq 1$) is:

$$
\begin{equation*}
\forall m \in \mathbb{N} \exists l \in \mathbb{N}: m \in A(l) \tag{13}
\end{equation*}
$$

Because the level sets $A(l)$ and $A\left(l^{\prime}\right)$ satisfy $A(l) \cap A\left(l^{\prime}\right)=\emptyset$ for $l \neq l^{\prime}$ the \exists symbol in this conjecture can be replaced by the a unique \exists_{1} symbol.
This conjecture means that the CfTree gives a permutation of \mathbb{N} when read level by level, for $l \geq 1$.
For the CfTree see A324246.
The successor formula eq. (11) leads to nine rules $S(i, j ; D)$ with i and j from $\{0,1,2\}$ for the residue classes modulo 3 for $m \in A(l)$ and $m^{\prime} \in A(l+1)$, respectively, for $l \in \mathbb{N}$, and $D \in\{l, r, v\}$ for the downwards directions left, right, vertical. The notation $m=(a, b)$ and $m^{\prime}=(c, d)$ means that from $m=a+K b$ follows $m^{\prime}=c+K d$ for $K \in \mathbb{N}_{0}$.

$$
\begin{align*}
& S(0,0 ; r): m=(0,9) \quad \xrightarrow{r} m^{\prime}=(0,12)(\equiv 0(\bmod 3)), \\
& S(0,1 ; r): m=(3,9) \quad \xrightarrow{r} m^{\prime}=(4,12)(\equiv 1(\bmod 3)), \\
& S(0,2 ; r): m=(6,9) \quad \xrightarrow{r} m^{\prime}=(8,12)(\equiv 2(\bmod 3)), \\
& S(0,2 ; l): m=(0,3) \quad l \\
& S(1,0 ; v): m=(1,3) \quad m^{\prime}=(2,12)(\equiv 2(\bmod 3)), \tag{14}\\
& \\
& S(2,0 ; r): m=(5,9) \quad m^{\prime}=(6,12)(\equiv 0(\bmod 3)), \\
& S(2,1 ; r): m=(2,9) \quad \begin{array}{l}
r \\
S(2,2 ; r): \\
S(2,1 ; l):
\end{array} \\
& m=(8,9) \quad m^{\prime}=(3,6)(\equiv 0(\bmod 3)), \\
& m=(2,3) \quad m^{\prime}=(5,6)(\equiv 2(\bmod 3)), \\
& m^{\prime}=(10,12)(\equiv 1(\bmod 3)) .
\end{align*}
$$

Because $m=0 \in A(0)$ is not considered, $K \geq 1$ for $S(0,0 ; r)$ and $S(0,2 ; l)$.
$S(0,1 ; r)$ is always followed by $S(1,0 ; v)$, hence $m=(3,9) \xrightarrow{r v} m^{\prime \prime}=(18,48)$.
$S(2,1 ; r)$ is always followed by $S(1,0 ; v)$, hence $m=(2,9) \xrightarrow{r v} m^{\prime \prime}=(6,24)$.
$S(2,1 ; l)$ is always followed by $S(1,0 ; v)$, hence $m=(2,3) \xrightarrow{l v} m^{\prime \prime}=(42,48)$.
Examples:

1) $S(0,0 ; r)$ with $K=1: m=9_{0} \in A(8) \xrightarrow{r} m^{\prime}=12_{0} \in A(9)$ with a downwards right branch.
2) $S(0,2 ; l)$ with $K=1: m=3_{0} \in A(6) \xrightarrow{l} m^{\prime}=14_{2} \in A(7)$ with a downwards left branch.
3) $S(2,1 ; l)$ with $K=1: m=5_{2} \in A(4) \xrightarrow{l} \quad m^{\prime}=22_{1} \in A(5)$.
4) $S(2,1 ; l)$ then $S(1,0 ; v)$, with $K=1: m=5_{2} \xrightarrow{l v} \quad m^{\prime \prime}=90_{0}$.

For the CfTree there are also nine rules for the predecessors $m \in A(l)$ of $m^{\prime} \in A(l+1)$, for $l \in \mathbb{N}$. They are denoted by $P(i, j ; D)$, with i and j from $\{0,1,2\}$ for the residue classes modulo 3 of m^{\prime} and m, respectively, and $D \in\{l, r, v\}$ for the upwards directions left, right, vertical.
The notation is as above: $m^{\prime}=(a, b)$ from $m=(c, d)$ means that if $m^{\prime}=a+b K$ then $m=c+d K$ for $K \in \mathbb{N}_{0}$, as long as $m^{\prime} \geq 2$.

$$
\begin{array}{ll}
P(0,0 ; r): & m^{\prime}=(0,12) \text { from } m=(0,9)(\equiv 0(\bmod 3)), \\
P(0,1 ; v): & m^{\prime}=(6,24) \text { from } m=(1,3)(\equiv 1(\bmod 3)), \\
P(0,2 ; r): & m^{\prime}=(3,6) \text { from } m=(5,9)(\equiv 2(\bmod 3)), \\
P(1,0 ; r): & m^{\prime}=(4,12 \text { from } m=(3,9)(\equiv 0,(\bmod 3)), \\
P(1,2 ; r): & m^{\prime}=(1,6) \text { from } m=(2,9)(\equiv 2,(\bmod 3)), \\
P(1,2 ; l): & m^{\prime}=(10,12) \text { from } m=(2,3)(\equiv 2,(\bmod 3)), \\
& \\
P(2,0 ; r): & m^{\prime}=(8,12) \text { from } m=(6,9)(\equiv 0(\bmod 3)), \\
P(2,0 ; l): & m^{\prime}=(2,12) \text { from } m=(0,3)(\equiv 0(\bmod 3)), \tag{16}\\
P(2,2 ; r): & m^{\prime}=(5,16) \text { from } m=(8,9)(\equiv 2(\bmod 3)) .
\end{array}
$$

If also level $l=0$ is considered there is an an exception for rule $P(2,0 ; l)$ for $m^{\prime}=2(K=0)$ because the direction to 0 from 2 of level $l=1$ is vertical (v), not left (l).

Examples:

1) $P(1,0 ; r)$ with $K=0: m^{\prime}=4_{1} \in A(6)$ leading to $m=3_{0} \in A(5)$ in the right direction.
2) $P(2,0 ; r)$ with $K=0: m^{\prime}=8_{2} \in A(4)$ to $m=6_{0} \in A(3)$ in the right direction.
3) $P(2,2 ; r)$ with $K=0: m^{\prime}=5_{2} \in A(5)$ to $m=8_{2} \in A(4)$ in the right direction.

Instead of the level entries m one can use words w over the alphabet $\{l, r, v\}$ (left, right, vertical, respectively) for the paths of the branches starting with $2 \in A(1)$ downwards to the level containing m. For example, the path to $m=200 \in A(7)$ is encoded as word lvrrvr of length 6 , or backwards from 200 to 2 by rvrrvl.
In general, $m \in A(l)$ is mapped to a word $w(m)$ of length $\# w(m)=l$, for $l=1,2, \ldots$, starting with l or r.

References

[1] Nicolas Vaillant and Philippe Delarue, The hidden face of the $3 x+1$ problem. Part I: Intrinsic algorithm, April 26, 2019
http://nini-software.fr/site/uploads/arithmetics/collatz/Intrinsic\ 3x+1\ V2.01. pdf.
Thanks to Nicolas Vaillant for sending me the October 20, 2018 version of this paper.
[2] The On-Line Encyclopedia of Integer Sequences (2010), published electronically at http: //oeis.org.

OEIS A-numbers related to the Vaillant and Delarue paper: A072197, A324036, A324037, A324038, $\underline{\text { A324039, A324040, A324245, A324246. }}$

[^0]: ${ }^{1}$ wolfdieter.lang@partner.kit.edu, https://www.itp.kit.edu/~wl/

