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Cycles of reduced Pell forms, general Pell equations and Pell graphs

Wolfdieter L a n g 1

Abstract

Each unreduced Pell form is equivalent to its reduced principal form which generates a cycle
of reduced forms. It is known that the general solution of the Pell form representing +1 is found
from the trivial solution of this principal form. For the representation of nonzero integers not +1
the representative parallel primitive forms are instrumental. The equivalence relations between these
forms can be depicted by Pell graphs. All proper solutions are found from the trivial solutions of these
parallel forms. This memoir is based on the treatment given by Scholz and Schoeneberg [6].

1 Preliminaries and reduced Pell forms

For details on indefinite binary quadratic forms see the Buell [1] and Scholz-Schoeneberg [6] references,
and also the author’s paper [4] given as a link under A225953 where proofs are given of some of the later
given statements.

A binary quadratic form is written as F (A, ~x) = ~x⊤A ~x = a x2 + b x y + c y2 with the matrix A =
Matrix([[a, b/2], [b/2, c]]) and the column vector ~x = (x, y)⊤ (⊤ for transposed). One also uses F =
[a, b, c] keeping ~x in mind. The discriminant of F is Disc(F ) = b2 − 4 a c which is > 0 for the indefinite
case.
A proper equivalence transformation (also called substitution) from a form F (A, ~x) to a form F (A′, ~x′)
representing the same nonzero integer k is given by ~x′ = M ~x and A′ = M−1,⊤AM−1, with a determi-
nant +1 (unimodular) integer 2 × 2 matrix M (from SL(2,Z)). We also use F ′ = [a′, b′, c′] keeping ~x′

in mind. We call this an M−1-transformation from F to F ′ (not using a bold letter M). The invariance
is ~x′ ⊤A′ ~x′ = ~x⊤A ~x = k.

In the following we consider proper equivalence M (DetM = +1), primitive forms F = [a, b, c]
(gcd(a, b, c) = 1), and proper solutions (x, y)⊤ (gcd(x, y) = 1). Forms with only nonpositive a, b
and c are also not considered, because their representation problem is, modulo a sign change, given by
treated forms.

A special equivalence transformation from F = [a, b, c] to the so-called half-reduced right neighbor
form F̃ (see [6], p. 113) is given by F̃ = [c, −b + 2 c t, F (A, (−1, t)⊤)] with M−1 = R = R(t) =

Matrix([[0,−1], [1, t]]). This form is made unique by setting t =

⌈
f(Disc(F )) + b

2 c
− 1

⌉
if c > 0 and

t =

⌊
1 − f(Disc(F )) + b

2 |c|

⌋
if c < 0, where f(Disc(F )) :=

⌈√
Disc(F )

⌉
.

Each chain of such R-transformations of an indefinite binary quadratic (primitive) form F which is not
yet reduced reaches its first reduced form FR after some number of steps (for the references for the
definition see the following note). This reduced form gives rise to a cycle of (properly) equivalent forms
by applying again R-transformations. It determines a sequence of parameters t for these R matrices, the
tuple ~t = (t1, t2, ..., tP ), where the (primitive) period P is even, P = 2 p.
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A note on reduced principal forms Fp for Disc:

We use the definition of [1], p. 26, which is given explicitly in [4], Lemma 2, eq. (5) (with the formula for
b(D), with the discriminant D → Disc). This principal form Fp = [1, b(Disc),−(Disc − b2(Disc))/4]
is reduced. (This is in contrast to [6], p. 102, where non-reduced forms are called Hauptform for Disc.)

Proposition:

a) The non-reduced Pell form F (n) = [1, 0, −D(n)] of discriminant 4D(n), where D(n) =A000037(n)
(see Table 1), needs only two steps to reach the first reduced form

FR(n) = [1, 2 s(n), −(D(n) − s(n)2)], (1)

where s(n) =A000194(n) = D(n) − n, for n ≥ 1.
b) This first reduced form FR(n) coincides with the principal Form Fp(n) for Disc(n) = 4D(n), and

with f(n) =
⌈
2
√

D(n)
⌉
,

s(n) =
1

2





f(n) − 2 , if f(n) is even,

f(n) − 1 , if f(n) is odd .
(2)

Proof: a) The first R-transformation of F (n) has parameter t = s1 = 0 because s1 =⌈
1 −

⌈

2
√

D(n)
⌉

2D(n)

⌉
= 0 (see the above given formula for t). This leads to the still unreduced form

F ′ = [−D(n), 0, 1].

The second transformation uses t = s2 = s(n) =

⌈
⌈

2
√

D(n)
⌉

2 − 1

⌉
. If one takes forD(n) a (not allowed)

square k2, for k ≥ 1, then s2 = k − 1. The value of s(n) will increase by 1 for the next allowed D value

D(n) = k2 + 1. This becomes clear after analyzing the two inequalities k − 1 <
⌈2√k2 +1⌉

2 − 1 < k,

i.e., 2 k <
⌈
2
√
k2 + 1

⌉
< 2 (k + 1). Hence

⌈
2
√
k2 + 1

⌉
= 2 k + 1, and s(n) =

⌈
k − 1

2

⌉
= k, for

D(n) = k2 + 1. From D(1) = 2 follows s(1) = 1, and this leads to s(n) =A000194(n) (n appears n
times). Because of the s jumps after the squares values of D this implies that D(n) = n + s(n). The
third entry of FR(n) is obtained from the discriminant 4D(n).

b) Because FR(n) is reduced and the first entry is 1 this is the principal form Fp(n). Therefore, bp(n) =
2 s(n) is also given by [4], eq.(5), (with D → 4D(n) and f(D) → f(n)) and this proves the given
alternative for s(n) (because Disc(n) is even).

For the number of reduced primitive forms with discriminant 4D(n), with D(n) =A000037(n), see
2·A307236(n).

2 The +1 Pell equation and cycles

For the Pell equation x2 − D(n) y2 = +1 the principal cycle CR(n) of forms is obtained from the the
reduced principal form FR(n) = Fp(n). See Table 1 for these cycles with R-transformations given by
their t−tuples ~t(n). For these t-tuples see also the array A324251, and Table 1. The length of cycle
CR(n) is LCR(n) = 2 ·A307372(n). The general (proper) solution ~x(n; j) for j ∈ Z, with x(n; j) > 0
(obtainable always after an overall sign change of ~x(n; j)) will be obtained with the help of the matrix
Auto(n) for the automorphic equivalence transformation Auto(n) = R(t1(n)) · · · R(t2 p(n)(n)).

Example: For n = 5, D(5) = 7 with the t-tuple ~t(5) = (−1, 1, −1, 4) this is

Auto(5) =

(
2 9
3 14

)
. (3)
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The solutions ~x(n; j) are obtained by using the matrix B(n) := R(0)R(s(n)) needed to reach FR(n)
from the Pell form F (n) (see the Proposition), and the fact that the first entry 1 of FR(n) admits a
trivial solution ~x0 = (1, 0)⊤, by

~x(n; j) = B(n)Auto(n)j ~x0 , for j ∈ Z . (4)

Note that this formula does not always lead to solutions with positive x(n; j) but by an overall sign
change one ensures x(n; j) > 0.
There is only one j-family (family for short, also called class) of proper solutions, the so-called ambiguous
class, meaning that there is only one trivial solution, namely ~x = (1, 0)⊤, and the solutions with negative
y(n;−|j|) are obtained from (x(n; j), −y(n; j), for j ≥ 1. See, e.g.,Nagell [3], pp. 195 - 200. (The name
class used here is not related to the class number of binary quadratic forms, given in Table 2 in column
h(n). This is why we prefer to use the notion family.)

In the example n = 5 from above B(5) := R(0)R(s(5) = 2) = −
(

1 2
0 1

)
, and the general proper

solution of the Pell equation x2 − 7 y2 = +1 is

(
x(j)
y(j)

)
= −

(
1 2
0 1

)(
2 9
3 14

)j (
1
0

)
, for j ∈ Z . (5)

The power of the automorphic matrix can always be computed with the help of Chebyshev S polynomials,
with their coefficients given in A049310.
In the example S(n, x = 16) enters given in A077412.

Auto(5)j =

(
S(j, 16)− 14S(j − 1, 16) 9S(j − 1, 16)

3S(j − 1, 16) S(j, 16) − 2S(j − 1, 16)

)
, (6)

for j ∈ Z. The solutions are usually given with positive x(j). Modulo the mentioned overall sign change
these solutions are, for j = −4, ..., +4,

(
32257
−12192

) (
2024
−765

)
,

(
127
−48

) (
8
−3

)
,

(
1
0

)
,

(
8
3

)
,

(
127
48

) (
2024
765

)
,

(
32257
12192

)
. (7)

See A001081 and A001080 for x(j) and y(j), for j ≥ 0, respectively.

For the forms involved in this example see also part of the Pell graph given in the FIGURE (erasing the
links from FPa1 and FPa2 to Fp).

3 General Pell form representations and Pell graphs

The general solution of the Pell equation x2 − D(n) y2 = k 6= +1, with a nonzero integer k, is more
involved.
For given k not all D(n) admit solutions. E.g., already k = −1 restricts n to be from A003814 =
2, 5, 10, 13, 17, .... The problem is to find all fundamental solutions (hence the number of families) for
representable k. They satisfy certain inequalities for positive and for negative k given in [3], Theorems
108 and 108a, respectively (k is called N there), based on the positive fundamental solution of the +1
Pell equation known from above for the power j = 1 (modulo overall sign change).

Here the so-called parallel forms come into play [6], p. 105, eq. (129), or [1], p. 49, f ′, without using
the name parallel. We follow [6] but we use for a transformation matrix M, as given above, which is the
inverse of the matrix used there.
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Definition: Two equivalent forms F and F ′ are called parallel, with notation F ‖ F ′, if F = [a, b, c]
and F ′ = [a, b′, c′] with b′ ≡ b (mod 2 a). c′ is then determined by Disc(F ) = Disc(F ′).

For a (primitive) form F = [a, b, c] of discriminant Disc(F ) representing (properly) a nonzero integer
k there exists a t-family of parallel forms {F ′′(t)}t∈Z obtained in two steps from any proper solution
~x1 = (x1, y1)

⊤ of F = k. In the first step the transformation from F to F ′ is accomplished by
M−1 = Matrix([[x1, v1], [y1, w1]]) with DetM−1 = x1w1 − v1 y1 = +1, because gcd(x1, y1) = 1
implies the existence of such a pair (v1, w1). This leads to F ′ = [k, b′, c′] with some b′ (in fact b′ =
2 a v1 x1 + b (w1 x1 + v1 y1) + 2 cw1 y1), and c′ is determined from Disc(F ). In the second step the
transformation with M−1 = T(t) = Matrix[[1, t], [0, 1]] is used. This leads to F ′′ = [k, b′′, c′′] with
b′′ = b′ + 2 k t, and c′′ compatible with Disc(F ). Hence F ′ ‖ F ′′(t).

One chooses a representative of this residue class modulo 2 |k| of parallel primitive forms (in the following
named rpapfs) by fixing t = t0 such that b′′(t0) ∈ [0, 2 |k|). This corresponds to the first sentence of
Theorem 73, p. 104, of [6] (for general nonzero integer k). The second sentence is trivial: if a form F
is equivalent to a form F̂ with first entry a = k then k is represented by F because there is always the
trivial solution (1, 0) for F̂ .

A program which computes all these representative parallel forms for given Disc > 0 (from A079896)
and nonzero k can be given.
For even Disc (later used for the Pell case) one has Disc = 4D. One searches all integer solutions of

c = j2 −D
k

for j = 0, ..., |k| − 1, because b = 2 j (from the Disc formula). Thereby a set of bs is found.

For odd Disc, i.e., Disc−1 = 4D one has c = j (j+1)−D

k
for j = 0, ..., |k| − 1 because now b−1 = 2 j

(b is odd from the Disc formula). Again all integer c = c(j) qualify and this gives the representatives
of the parallel forms for Disc and k. The resulting forms may be imprimitive, which are not of interest,
because above only primitive forms are used.

For the array of the number of rpapfs for discriminant 4D(n) and |k| > 0 see A307377, and also Table
3 for the forms for n = 1, 2, ..., 30 and k = 1, 2, ..., 10 .

Implication: From the definition and the program of representative parallel forms follows:

If a rpapf F = [k, b, c] with Disc(F ) represents an integer k ≥ 1 then F̂ = [−k, b, −c] with Disc(F̂ ) =
Disc(F ) represents −k, and vice versa.

This sign flip of the outer entries (not the middle one) of any F will be called outer sign flip (an overall sign
flip of F would trivially represent −k). Note that in general such an outer sign flip is not possible with an
equivalence transformation, including improper ones. This is only possible (with a proper transformation)
if both forms F and F̂ (the outer sign flipped one) appear in one equivalence class (e.g., in the principal
cycles with class number h(n) = 1, or if a cycle is invariant under outer sign flip, like, e.g., for n = 7
with two such cycles, as shown in Table 2). Of course, a (not allowed) pure imaginary transformation
could achieve this outer sign flip: M−1 = iMatrix([[1, 0], [0. − 1]]).

For the Pell eq. x2 −D(n) y2 = k, for k 6= 0, +1, the idea is to compute first the list of all representative
parallel forms for Disc(n) = 4D(n) and nonzero k, and discards the imprimitive ones.

E.g., all the representative parallel forms for Disc(5) = 4D(5) = 28 and k = 9 are given by [9, 8, 1]
and [9, 10, 2]. They are primitive and unreduced. Improper solutions of x2 − 7 y2 = 9 exist also but are
not of interest because they reduce to X2 − 7Y 2 = +1 treated above.

Next one finds for each rpapf the first reduced form (see [6], Satz 79, p. 113, valid only for primitive
forms; see p. 104 for the remark on primitiv and eigentlich).

A side remark: Note that e.g., the imprimitive form [2, 2, −2] is parallel for D(3) = 5 and k = 2 and
unreduced. But by R-transformations no reduced form will be reached, because one finds the 2-cycle
[[2, 2, −2], [−2, 2, 2]] of unreduced forms.

In the example of section 2: [9, 8, 1] → [1, 4, −3] = FR(5) = Fp(5) with the R(6) matrix. Similarly,
[9, 10, 2] → [2, 2, −3] → [−3, 4, 1] → [1, 4,−3] = FR(5) = Fp(5) with consecutive R-transformations
with parameter tuple ~t = (3, −1, 4).
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Not all such rpapfs need to end up, after R-transformations, in the principal cycle, called CR. This can
happen if the class number h(n) of discriminant 4D(n) listed in Table 2 is not 1. There is then more than
one cycle. E.g., n = 2, D(2) = 3 has for k = 2 only one representative parallel form [2, 2, −1] which
is primitive and already reduced. It produces the 2-cycle [[2, 2, −1], [−1, 2, 2]]. This cycle is obtained

from the principal one CR by outer sign flip, and it will therefore be called ĈR(2) (see Table 2 and Table
3, where this form appears in boldface because it is reduced, and it is underlined because it does not
belong to the cycle CR(2)). Therefore, there is no solution to Pell equation x2 − 3 y2 = 2 because the
Pell form [1, 0, −3] is equivalent to the principal form FR(2) = Fp(2) = [1, 2, −2] of cycle CR(2). This
applies also for the k = 3 case with the one representative parallel non-reduced form [3, 0, −1] which,

after one step, ends up also in this non-principal cycle ĈR(2).

In Table 2 all cycles for n = 1, 2, ..., 30 are listed. The lengths of all cycles for discriminant 4D(n) sum
up to ΣL(n) which coincides with the number of reduced primitive forms for this discriminant given in
2·A307236(n).
Once we arrive by R-transformations from a rpapf with discriminant 4D(n), representing an nonzero
integer k 6= +1, at FR(n) = Fp (or any other reduced form from the principal cycle) we can give all
proper solutions of x2 − D(n) y2 = k. If there are no such rpapfs there will be no solutions, and vice
versa.
We name these rpapfs FPaC(n, k; i), for i ∈ {1, 2 ...., paC(n, k)} (indicating that they are connected to
the principal cycle CR) and the solutions ~x(n, k; i, j) of F (n). The case i = 0 can be added for the Pell
k = +1 case from section 2: ~x(n, k; 0, j) = ~x(n, k; j).

For example, for D(5) = 7 and k = 5 there are no such parallel forms, hence no solutions.

We start for each such parallel form FPaC(n; k; i) with the trivial solution (1, 0)⊤. Then we follow the
R-transformations to the principal cycle, and go from Fp(n) to the Pell form F (n) as done with the help
of matric B(n) above in part1).

The above started example will make this clear: n = 5, Disc(5) = 4D(5) = 28, and k = 9 (only proper
solutions are considered). The two rpapfs are FPa(5, 9; 1) = [9, 8, 1] and FPa(5, 9; 2) = [9, 10, 2] (we
omitted the C in the notation). They are unreduced and lead to FR(5) with ~t1 = (6) and ~t2 = (3, −1, 4)
from above. The trivial solution ~x0 = (1, 0)⊤ of [9, 8, 1] leads to a j-family of solutions of the Pell

equation x2 − 7 y2 = 9 by B(5)Auto(5)j R−1(6) ~x0, or

(
x1(j)
y1(j)

)
= −

(
1 2
0 1

)(
2 9
3 14

)j (
6 1
−1 0

)(
1
0

)
, for j ∈ Z . (8)

These are (after appropriate overall sign flips, to have positive x1(j)) all (proper) solutions of the first
j-family of solutions (called class of solutions in e.g., [6] and [3])), namely, for j = −4, ..., 0, ..., +4

(
214372
−8105

) (
13451
−5084

)
,

(
844
−319

) (
53
−20

)
,

(
4
−1

)
,

(
11
4

)
,

(
172
65

) (
2741
1036

)
,

(
43684
16511

)
. (9)

The positive solutions are given in (A307168, A307169).

The second j−family of solutions is obtained from the trivial solution ~x0 = (1, 0)⊤ of [9, 10, 2] by
B(5)Auto(5)j R−1(4)R−1(−1)R−1(3) ~x0. WithR−1(4)R−1(−1)R−1(3) = −Matrix([[−19,−5], [4, 1]])
this is (

x2(j)
y2(j)

)
=

(
1 2
0 1

)(
2 9
3 14

)j ( −19 −5
4 1

)(
1
0

)
, for j ∈ Z . (10)
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No overall sign flips are needed. The solutions for j = −4, ..., 0, ..., +4 are:

(
696203
−263140

) (
43684
−16511

)
,

(
2741
−1036

) (
172
−65

)
,

(
11
−4

)
,

(
4
1

)
,

(
53
20

) (
844
319

)
,

(
13451
5084

)
. (11)

The positive solutions are given in (A307172, A307173).

A side remark: Observe that the single class of improper solutions of this Pell equation could also be
obtained by starting with the improper trivial solution ~x1′0 = (0, 3)⊤ for the [9, 8, 1] case. This has
fundamental positive solution (24, 9)⊤.

See the FIGURE for the relation between the relevant forms for the solution of x2 − 7 y2 = 9. This
is an example of a directed, node and edge labeled Pell graph PG(D(5), k = 10). It has one loop and
10 vertices (nodes) and 10 links (edges) labeled with the forms and the t numbers for the R equivalence
transformations. Because there are two cycles for discriminant 4D(5) = 28 (h(5) = 2) there is another
loop graph from the 4-cycle for the reduced form F̂p(5) = [−1, 4, 3]. But this is not of direct interest
for the solution of the Pell problem F (5) = k. See, however, the following remarks concerning F (n)
representing −k).

Some remarks on Table 3 with the rpapfs for n = 1, 2, ..., 30 and k = 1, 2, ..., 10 . As mentioned above
forms in boldface are reduced. Underlined forms are not connected to the principal cycle CR(n), but to

either the outer sign flipped cycle ĈR(n) or to other cycles which may appear and are called generically
C and outer sign flipped Ĉ. Only for n = 7 the 6-cycle has been given separately, because it is outer
sign flip invariant, as is the CR(7) 2-cycle. For the cycles see Table 2.
From Table 3 one can see which integers k, with |k| ≤ 10 are representable for the Pell form F (n).
The first entries of the not underlined forms are representable, but not the first entries of the underlined
forms. If they are connected to a cycle ĈR then the negative of the first entry is representable by F (n).

Two examples: n = 7, D(7) = 10: F (7) is representable for |k| ≤ 10 only by k = ±1, ±6(2), ±9(2)
and ±10, with the number of proper families in brackets if it is larger than one. The negative k are also
representable because CR(7) = ĈR(7). n = 8, D(8) = 11: F (8) is representable for |k| ≤ 10 only by
k = +1, −2, +5(2), −7(2) and −10(2).

Except for the cases n = 12, 20, 25, 29 and 30 (for n ≤ 30) the cycles to which an underlined form is

connected is obvious. The cycle connections for these cases are n = 12: C, Ĉ,C, ĈR(12), Ĉ and Ĉ for

the six underlined forms, respectively. n = 20: C,C, Ĉ, Ĉ, Ĉ and ĈR(2) for the six underlined forms.

n = 25: C,C, ĈR(25), Ĉ, Ĉ and Ĉ for the six underlined forms. n = 29: Ĉ,C,C, Ĉ,C, Ĉ, ĈR(29),

ĈR(29),C and Ĉ for the ten underlined forms, and n = 30: Ĉ, Ĉ,C and ĈR(30) for the four underlined
forms.

For the number of families of proper solutions of the Pell form F (n) representing positive integers k see
the array in A324252, and for negative integers k see A307303.

An aside on graphs for general form representations

In general each representation problem of a primitive binary quadratic indeterminate form F which has
discriminant Disc > 0 from A079896 and a representable nonzero integer k leads to such a one loop
graph which we call FG(F, k). It may have large vertex and link numbers.

E.g., the primitive reduced principal form F = [1, 9, −2] = Fp withDisc(F ) = 89, and solution for k =
10, which is treated in [6], p. 116 and p. 121, has the 4 parallel forms [10, 3, −2], [10, 7, −1], [10, 13, 2]
and [10, 17, 5] (in [6] two other non-parallel forms [10, −3, −2] and [10, −7, −1] are used instead of
the last two ones). For them the t-tuples to reach F = Fp are (−3, 9), (−8, 4, −1, 1, −1, 1, −4, 9),
(5, −1, 1, −1, 1, −4, 9), and (2, −1, 1, −1, 4, −9, 4, −1, 1, −1, 1, −4, 9).
The cycle generated by Fp = F has period P = 2 · 7 = 14. The t−tuple is
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(−4, 1, −1, 1, −1, 4, −9, 4, −1, 1, −1, 1, −4, 9). Therefore FG([1, 9, −2], 10) has 2+ 8+ 7+ 13+ 14 =
44 vertices as well as links.
All four classes of proper solutions are found (modulo overall sign flips) from the trivial solution ~x =
(1, 0)⊤ by ~x(Disc = 89, 10; i, j) = Autoj BPa(i) ~x0 , with i ∈ {1, 2, 3, 4} and j ∈ Z.
In the graph FG([1, 9, −2], 10) one has to go from FPa(i) to Fp which is in the direction of the
link arrows. Therefore the matrices BPa(i) acting on ~x0, are obtained from the inverse R ma-
trices multiplied in reverse order. They are BPa(1) = Matrix([[−28, 9], [3,−1]]) , BPa(2) =
Matrix([[8028,−977], [−871, 106]]), BPa(3) = Matrix([[−1189,−212], [129, 23]]) , and BPa(4) =
Matrix([[341001, 129001], [−36997,−13996]]), respectively. The automorphic matrix uses products of R
matrices and it becomes Auto = −Matrix([[23001, 212000], [106000, 977001]]). The four fundamental
positive solutions are then (from j = 1 after an overall sign flip for i = 1 and 4) ~x0(1) = (8028, 36997)⊤,
~x0(2) = (28, 129])⊤, ~x0(3) = (189, 871)⊤, and ~x0(4) = (1, 3)⊤ .
Note that the class number for Disc(F ) = 89 is 1, therefore there is only this principal 14-cycle.

4 Relations between solutions of different families

Because of the structure of the Pell graph (or also graphs FG(F, k) for general forms) it is clear that
all these primitive forms labeling the vertices are SL(2, Z) equivalent due to the links standing for R-
transformations or their inverses, depending on the orientation of a link. The number paC(Disc > 0, k)
of rpapfs reaching the cycle of the graph gives the number of fundamental solutions (using positive x by
convention) of the form F with a representable nonzero k. This F is connected to its principal form Fp.
Sometimes F may already be reduced and coincide with Fp. Each fundamental solution is obtained from
the trivial solutions (1, 0)⊤ of each rpapf. It gives rise, via powers of the automorphic matrix, to an
infinite j-family (j ∈ Z) of proper solutions.
Because FG(F, k) is connected (with one loop derived from Fp for Disc(F )) it is possible to go from any
rpapf FPa(i) to any other FPa(i′). Thus one can find a nontrivial solution for the latter from the trivial
one of the first. The trivial solutions of these two parallel forms are not mapped to each other, because
otherwise the matrix connecting them would have to be its own inverse (idempotent).
This shows that all rpapfs of FG(F, k), and with them all other forms labeling the vertices of the graph,
have the same number of different families of solutions for this k value.

In the above considered Pell example forD(5) = 7 the trivial solution ~x0 = (1, 0)⊤ of FPa(1) = [9, 8, 1]
for k = 9 maps to (

1
−5

)
= R(3)R(−1)R(4)R−1(6)

(
1
0

)
, (12)

a solution of the second non-trivial family of FPa(2) for k = 9. The connecting matrix is
Matrix([[1, 1], [−5,−4]]) (not idempotent).

The other partner graph for D(5) = 7 with the 4-cycle ĈR(5) starting with F̂p = [−1, 4, 3] (the
mentioned outer sign flipped Fp) has no rpapfs for k = 9 (because the only two existing ones are

connected to the given Pell graph). Therefore the graph FG(F̂p, 9) is just the 4-cycle, and there are no
proper solutions for any of the forms involved in this cycle for k = 9. This cycle has e.g., two rpapfs for
k = 6, viz [6, 2, −1] and [6, 10, 3] leading to two families of proper solutions. This shows, in turn, that
the Pell form F (5) has no proper solution for k = 6 (and no improper ones).

Instead of going in the case Pell F (5) = [1, 0, −7] and k = 9 with the trivial solutions from FPa(1) to
F (5) finding the solution of the first family (eq. 8), one could go first from FPa(1) to FPa(2) (as above)
finding the solution (1, −5)⊤ from its non-trivial family, and then go via Fp with this solution to F (5),
to find (after an overall sign flip) the solution (4, −1) of the first family (the j = 0 solution):

−
(

4
−1

)
= B(5)R−1(4)R−1(−1))R−1(3))

(
1
−5

)
. (13)
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The trivial solution of Pa2 leads to the second family for F (5) representing k = 9, as given above in eq.
(10).

In a case with more than one family of solutions on cannot, of course, obtain all solutions from one rpapf
FPa without knowing besides the trivial solution also a solution for each other family. This show the
importance of knowing all rpapfs in order to use only the trivial solutions to find all solutions.

5 Conclusion

The search for fundamental solutions for each family, done e.g., by scanning the inequalities of Nagell
mentioned above, has in this paper, based on the Scholz-Schoeneberg reference, replaced by the search
of all representative parallel primitive forms (rpapfs) for Disc > 0, k ∈ Z \ {0} with the above given
program.
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Legends:

FIGURE:Pell graph for F (5) = [1, 0, −7], with a principal cycle of length 4, and connections of twp
parallel forms FPa1 and FPa2 to the principal form Fp.

Table 1: One fourth of discriminant D(n) =A000037(n), s(n) = A000194(n). FR(n) = Fp(n) is the
reduced principal form of 4 ·D(n), and the length LCR(n) =A307372(n) of the principal cycle CR(n).

Table 2: Class number h(n) =A307359(n). L(n) gives the lengths of the cycles. CR is the cycle starting

with FR given in Table 1. ĈR is the cycle with the signs of all first and last entries of the forms of the
cycle CR changed. The same rule applies to the cycles C defined for some rows and Ĉ. ΣL(n) is the
sum of the total lengths of the cycles (A307236).
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Table 3: Representative parallel primitive forms rpapfs, for discriminant 4D(n), for n = 1, 2, ..., 30 ,
and representation of k = 1, 2, ..., 10 . The first forms are the Pell forms F (n). Boldface forms are
already reduced, hence members of cycles. Underlined forms do not reach the principal cycle CR(n), so
there is no proper solution for the Pell form for positive k in the considered range. If they are connected
to cycle ĈR(n) then −k is represented by F (n). These forms with outer signs flipped represent −k, and
they reach other cycles listed in Table 2. The cases n = 12, 20, 25, 29 and 30 have four cycles, and are
considered separately in the text.

9



FIGURE

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

Fp
(1)Fp pF

(2)
Fp
  (3)

= [1, 4, −3] = [−3, 2, 2] = [2, 2, −3] = [−3, 4, 1]

(1)Fp

pF
(2)

Fp
  (3)

FPa1 = [9, 8, 1]

All solutions for Pell  x^2  − 7 y^2 = 9
Disc(5) = 4 D(5) = 4*7

FPa1

6

Fp

−1

FPa2
FPa2’

FPa2’’ 3

−14

4

−1 1

2

0

  

F’

F’ = [−7, 0, 1]

FPa2 = [9, 10, 2]  FPa2’ FPa2’’ = [−3, 4, 1]= [2, 2, −3]

F = [1, 0, −7]

F
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Table 1: First reduced forms FR(n) for Pell forms [1, 0,−D(n)] and their cyles CR(n)

n D(n) s(n) FR(n) ~t(n) cycles(n) (starting with FR(n)) LCR(n)

1 2 1 [1, 2,−1] (−2, 2) [−1, 2, 1] 2
2 3 1 [1, 2,−2] (−1, 2) [−2, 2, 1] 2
3 5 2 [1, 4,−1] (−4, 4) [−1, 4, 1] 2
4 6 2 [1, 4,−2] (−2, 4) [−2, 4, 1] 2
5 7 2 [1, 4,−3] (−1, 1,−1, 4) [−3, 2, 2], [2, 2,−3], [−3, 4, 1] 4
6 8 2 [1, 4,−4] (−1, 4) [−4, 4, 1] 2
7 10 3 [1, 6,−1] (−6, 6) [−1, 6, 1] 2
8 11 3 [1, 6,−2] (−3, 6) [−2, 6, 1] 2
9 12 3 [1, 6,−3] (−2, 6) [−3, 6, 1] 2

10 13 3 [1, 6,−4] (−1, 1,−1, 1,−6, 1,−1, 1,−1, 6) [−4, 2, 3], [3, 4,−3], [−3, 2, 4], [4, 6,−1], [−1, 6, 4], [4, 2,−3], [−3, 4, 3],
[3, 2,−4], [−4, 6, 1] 10

11 14 3 [1, 6,−5] (−1, 2,−1, 6) [−5, 4, 2], [2, 4,−5], [−5, 6, 1] 4
12 15 3 [1, 6,−6] (−1, 6) [−6, 6, 1] 2
13 17 4 [1, 8,−1] (−8, 8) [−1, 8, 1] 2
14 18 4 [1, 8,−2] (−4, 8) [−2, 8, 1] 2
15 19 4 [1, 8,−3] (−2, 1,−3, 1,−2, 8) [−3, 4, 5], [5, 6,−2], [−2, 6, 5], [5, 4,−3], [−3, 8, 1] 6
16 20 4 [1, 8,−4] (−2, 8) [−4, 8, 1] 2
17 21 4 [1, 8,−5] (−1, 1,−2, 1,−1, 8) [−5, 2, 4], [4, 6,−3], [−3, 6, 4], [4, 2,−5], [−5, 8, 1] 6
18 22 4 [1, 8,−6] (−1, 2,−4, 2,−1, 8) [−6, 4, 3], [3, 8,−2], [−2, 8, 3], [3, 4,−6], [−6, 8, 1] 6
19 23 4 [1, 8,−7] (−1, 3,−1, 8) [−7, 6, 2], [2, 6,−7], [−7, 8, 1] 4
20 24 4 [1, 8,−8] (−1, 8) [−8, 8, 1] 2
21 26 5 [1, 10,−1] (−10, 10) [−1, 10, 1] 2
22 27 5 [1, 10,−2] (−5, 10) [−2, 10, 1] 2
23 28 5 [1, 10,−3] (−3, 2,−3, 10) [−3, 8, 4], [4, 8,−3], [−3, 10, 1] 4
24 29 5 [1, 10,−4] (−2, 1,−1, 2,−10, 2,−1, 1,−2, 10) [−4, 6, 5], [5, 4,−5], [−5, 6, 4], [4, 10,−1], [−1, 10, 4], [4, 6,−5], [−5, 4, 5]

[5, 6,−4], [−4, 10, 1] 10
25 30 5 [1, 10,−5] (−2, 10) [−5, 10, 1] 2
26 31 5 [1, 10,−6] (−1, 1,−3, 5,−3, 1,−1, 10) [−6, 2, 5], [5, 8,−3], [−3, 10, 2], [2, 10,−3], [−3, 8, 5], [5, 2,−6], [−6, 10, 1] 8
27 32 5 [1, 10,−7] (−1, 1,−1, 10) [−7, 4, 4], [4, 4,−7], [−7, 10, 1] 4
28 33 5 [1, 10,−8] (−1, 2,−1, 10) [−8, 6, 3], [3, 6,−8], [−8, 10, 1] 4
29 34 5 [1, 10,−9] (−1, 4,−1, 10) [−9, 8, 2], [2, 8,−9], [−9, 10, 1] 4
30 35 5 [1, 10,−10] (−1, 10) [−10, 10, 1] 2
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Table 2: Class number h(n) and all cycles for 4 · D(n) for n = 1..30

n D(n) h(n) L(n) cycles ΣL(n)

1 2 1 (2) [CR(1)] 2

2 3 2 (2, 2) [CR(2), ĈR(2)] 4
3 5 1 (2) [CR(3)] 2

4 6 2 (2, 2) [CR(4), ĈR(4)] 4

5 7 2 (4, 4) [CR(5), ĈR(5)] 8

6 8 2 (2, 2) [CR(6), ĈR(6)] 4
7 10 2 (6, 2) [[[3, 2, -3], [-3, 4, 2], [2, 4, -3], [-3, 2, 3], [3, 4, -2], [-2, 4, 3]], CR(7)] 8

8 11 2 (2, 2) [CR(8), ĈR(8)] 4

9 12 2 (2, 2) [CR(9), ĈR(9)] 4
10 13 1 (10) [CR(10)] 10

11 14 2 (4, 4) [CR(11), ĈR(11)] 8

12 15 4 (2, 2, 2, 2) [CR(12), ĈR(12), C = [[2, 6, -3], [-3, 6, 2]], Ĉ 8
13 17 1 (2) [CR(13)] 2

14 18 2 (2, 2) [CR(14), ĈR(14)] 4

15 19 2 (6, 6) [CR(15), ĈR(15)] 12

16 20 2 (2, 2) [CR(16), ĈR(16)] 4

17 21 2 (6, 6) [CR(17), ĈR(17)] 12

18 22 2 (6, 6) [CR(18), ĈR(18)] 12

19 23 2 (4, 4) [CR(19), ĈR(19)] 8

20 24 4 (4, 4, 2, 2) [C = [[4,4,-5],[-5,6,3],[3,6,-5],[-5,4,4]], Ĉ, CR(20), ĈR(20)] 12
21 26 2 (6, 2) [[[5, 2, -5], [-5, 8, 2], [2, 8, -5], [-5, 2, 5], [5, 8, -2], [-2, 8, 5]], CR(21)] 8

22 27 2 (2, 2) [CR(22), ĈR(22)] 4

23 28 2 (4, 4) [CR(23), ĈR(23)] 8
24 29 1 (10) [CR(24)] 10

25 30 4 (4, 4, 2, 2) [C = [[3, 6, -7], [-7, 8, 2], [2, 8, -7], [-7, 6, 3]], Ĉ, CR(25), ĈR(25)] 12

26 31 2 (8, 8) [CR(26), ĈR(26)] 16

27 32 2 (4, 4) [CR(27), ĈR(27)] 8

28 33 2 (4, 4) [CR(28), ĈR(28)] 8

29 34 4 (6, 6, 4, 4) [C = [[5, 4, -6], [-6, 8, 3], [3, 10, -3], [-3, 8, 6], [6, 4, -5], [-5, 6, 5]], Ĉ, CR(29), ĈR(29)] 20

30 35 4 (2, 2, 2, 2) [CR(30), ĈR(30), C = [[2, 10, -5], [-5, 10, 2]], Ĉ] 8
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Table 3: Representative parallel primitive forms (rpapfs) for D(n), for n = 1..30, and k = 1..10

n D(n) rpapfs

1 2 [1, 0, -2], [2, 0, -1], [[7, 6, 1], [7, 8, 2]]
2 3 [1, 0, -3], [2, 2, -1], [3, 0, -1], [6, 6, 1]

3 5 [1, 0, -5], [[4, 2, -1], [4, 6, 1]], [5, 0, -1]
4 6 [1, 0, -6], [2, 0, -3], [3, 0, -2], [[5, 2, -1], [5, 8, 2]], [6, 0, -1], [[10, 8, 1] , [10, 12, 3]]

5 7 [1, 0, -7], [2, 2, -3], [[3, 2, -2], [3, 4, -1]], [[6, 2, -1], [6, 10, 3]], [7, 0, -1] [[9, 8, 1], [9, 10, 2]]
6 8 [1, 0, -8], [4, 4, -1], [[7, 2, -1], [7, 12, 4]], [[8, 0, -1], [8, 8, 1]]

7 10 [1, 0, -10], [2, 0, -5], [[3, 2, -3], [3, 4, -2]], [5, 0, -2], [[6, 4, -1], [6, 8, 1]], [[9, 2, -1], [9, 16, 6]], [10, 0, -1]

8 11 [1, 0, -11], [2, 2, -5], [[5, 2, -2], [5, 8, 1]], [[7, 4, -1], [7, 10, 2]], [[10, 2, -1], [10, 18, 7]]

9 12 [1, 0, -12], [3, 0, -4], [4, 0, -3], [[8, 4, -1], [8, 12, 3]]

10 13 [1, 0, -13], [[3, 2, -4], [3, 4, -3]], [[4, 2, -3], [4, 6, -1]], [[9, 4, -1], [9, 14, 4]]
11 14 [1, 0, -14], [2, 0, -7], [[5, 4, -2], [5, 6, -1]], [7, 0, -2], [[10, 4, -1], [10, 16, 5]]

12 15 [1, 0, -15], [2, 2, -7], [3, 0, -5], [5, 0, -3], [6, 6, -1], [[7, 2, -2], [7, 12, 3]], [10, 10, 1]

13 17 [1, 0, -17], [[8, 6, -1], [8, 10, 1]]
14 18 [1, 0, -18], [2, 0, -9], [[7, 4, -2], [7, 10, 1]], [[9, 0, -2], [9, 6, -1], [9, 12, 2]],

15 19 [1, 0, -19], [2, 2, -9], [[3, 2, -6], [3, 4, -5]], [[5, 4, -3], [5, 6, -2]], [[6, 2, -3], [6, 10, 1]], [[9, 2, -2], [9, 16, 5]], [[10, 6, -1], [10, 14, 3]]

16 20 [1, 0, -20], [4, 0, -5], [5, 0, -4]

17 21 [1, 0, -21], [3, 0, -7], [[4, 2, -5], [4, 6, -3]], [[5, 2, -4], [5, 8, -1]], [7, 0, -3]

18 22 [1, 0, -22], [2, 0, -11], [[3, 2, -7], [3, 4, -6]], [[6, 4, -3], [6, 8, -1]], [[7, 2, -3], [7, 12, 2]], [[9, 4, -2], [9, 14, 3]]

19 23 [1, 0, -23], [2, 2, -11], [[7, 6, -2], [7, 8, -1]]

20 24 [1, 0, -24], [3, 0, -8], [4, 4, -5], [[5, 4, -4], [5, 6, -3]], [[8, 0, -3], [8, 8, -1]]

21 26 [1, 0, -26], [2, 0, -13], [[5, 2, -5], [5, 8, -2]], [[10, 8, -1], [10, 12, 1]]

22 27 [1, 0, -27], [2, 2, -13], [[9, 6, -2], [9, 12, 1]]

23 28 [1, 0, -28], [[3, 2, -9], [3, 4, -8]], [4, 0, -7], [7, 0, -4] [[8, 4, -3], [8, 12, 1]], [[9, 2, -3], [9, 16, 4]]

24 29 [1, 0, -29], [[4, 2, -7], [4, 6, -5]], [[5, 4, -5], [5, 6, -4]], [[7, 2, -4], [7, 12, 1]]
25 30 [1, 0, -30], [2, 0, -15], [3, 0, -10], [5, 0, -6], [6, 0, -5], [[7, 6, -3], [7, 8, -2]], [10, 0, -3]

26 31 [1, 0, -31], [2, 2, -15], [[3, 2, -10], [3, 4, -9]], [[5, 2, -6], [5, 8, -3]], [[6, 2, -5], [6, 10, -1]], [[9, 4, -3], [9, 14, 2]], [[10, 2, -3], [10, 18, 5]]

27 32 [1, 0, -32], [4, 4, -7], [[7, 4, -4], [7, 10, -1]]

28 33 [1, 0, -33], [3, 0, -11], [[8, 6, -3], [8, 10, -1]]

29 34 [1, 0, -34], [2, 0, -17], [[3, 2, -11], [3, 4, -10]], [[5, 4, -6], [5, 6, -5]], [[6, 4, -5], [6, 8, -3]], [[9, 8, -2], [9, 10, -1]], [[10, 4, -3], [10, 16, 3]]

30 35 [1, 0, -35], [2, 2, -17], [5, 0, -7], [7, 0, -5], [10, 10, -1]
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