On the Generating Functions of the Boas-Buck Sequences for the Inverse of Riordan and Sheffer Matrices

Wolfdieter Lang ${ }^{1}$

Abstract

By a special application of the Lagrange series the generating functions for the Boas-Buck sequences for inverse Riordan or Sheffer matrices can be rewritten, and the coeffcients are obtained from the functions which determine the original Riordan or Sheffer matrix. The Boas-Buck sequences provide recurrences for each column sequence of such matrices. Several examples for the determination of the sequences for such inverse matrices are given.

1 Introduction and Summary

The Boas-Buck identity [1, 9] for ordinary and exponential lower triangular convolution matrices of the Riordan R or Sheffer S type, respectively, $[10,11,5]$ imply a recurrence for these matrices involving the two BoasBuck sequences $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\beta=\left\{\beta_{n}\right\}_{n=0}^{\infty}$. The ordinary generating functions (o.g.f., for short) A and B of these sequences for both types of convolution matrices are given for $R=(G(x), x \widehat{F}(x))$ or $S=(g(x), x \widehat{f}(x))$ with formal power series (f.p.s., for short) G, \widehat{F} or g, \widehat{f} are given as follows. Here \widehat{F} or \widehat{f}, and usually also G or g, start with 1. For G or g the notation \mathcal{G}, and for $x \hat{F}$ or $x \hat{f}$ the notation \mathcal{F} will be used, as well as $\widehat{\mathcal{F}}$ for $\mathcal{F}=x \widehat{\mathcal{F}}$. The notation of Rainville will be used.

$$
\begin{align*}
& A(x):=\sum_{n=1}^{\infty} \alpha_{n} x^{n}=(\log \mathcal{G}(x))^{\prime} \tag{1}\\
& B(x)=\sum_{n=1}^{\infty} \beta_{n} x^{n}=(\log \widehat{\mathcal{F}}(x))^{\prime} \tag{2}
\end{align*}
$$

For completeness the recurrence formulae for the R and S matrix elements $R(n, m)$ and $S(n, m)$, as lower triangular matrices, vanishing for $n<m$, are also given.

$$
\begin{gather*}
R(n, m)=\frac{1}{n-m} \sum_{k=m}^{n-1}\left(\alpha_{n-1-k}+m \beta_{n-1-k}\right) R(k, m), \text { for } n \in \mathbb{N}, \text { and } m=0,1, \ldots, n-1, \tag{3}\\
S(n, m)=\frac{n!}{n-m} \sum_{k=m}^{n-1} \frac{1}{k!}\left(\alpha_{n-1-k}+m \beta_{n-1-k}\right) S(k, m), \text { for } n \in \mathbb{N}, \text { and } m=0,1, \ldots, n-1, \tag{4}
\end{gather*}
$$

with the diagonal elements $R(n, n)$ or $S(n, n)$ as inputs.
These matrices form a group, the Riordan or Sheffer group. These square matrices are infinite dimensional but one can consider any finite dimension N for practical purposes. Subgroups of special interest are the so-called associated groups with $\mathcal{G}=1$, and the Bell, resp. Narumi, groups with $\widehat{\mathcal{F}}=\mathcal{G}$.
In this note we are interested in inverse Riordan R^{-1} and Sheffer matrices S^{-1}.These inverse matrices are denoted by $R^{-1}=\left(\frac{1}{G \circ F^{[-1]}}, F^{[-1]}\right)$ or $S^{-1}=\left(\frac{1}{g \circ f^{[-1]}}, f^{[-1]}\right)$, were the compositional inverse of the $f . p . s$. F and f are denoted by $F^{[-1]}$ and $f^{[-1]}$, respectively. The composition symbol \circ means that $(g \circ f)(x):=g(f(x))$. Thus $f \circ f^{[-1]}=i d=f^{[-1]} \circ f$.

[^0]In the Sheffer case the subgroup of the associated matrices $J=(1, f)$ is also called Jabotinsky subgroup, It appears more often than the Narumi case. For this case the inverse matrix is $J^{-1}=\left(1, f^{[-1]}(y)\right.$. These two cases are closely related: for $N=(g(x), x g(x))=\left(\frac{f(x)}{x}, f(x)\right)$ and $J=(1, f(x))$ the matrix elements are related by $N(n, m)=\frac{m+1}{n+1} J(n+1, m+1)$, and the row polynomials are $N \operatorname{pol}(n, x)=\frac{1}{n+1} J p o l^{\prime}(n+1, x)$. This follows from the corresponding e.g.f. s of the column sequences, and the definition of the row polynomials.
The generating functions for the Boas-Buck sequences (we use the notations $\bar{\alpha}, \bar{\beta}, \bar{A}$, and \bar{B}) for these inverse matrices, using, as above, \mathcal{G} for G or g, and $\mathcal{F}^{[-1]}$ for $F^{[-1]}$ or $f^{[-1]}$ are then

$$
\begin{align*}
& \bar{A}(y)=\sum_{n=1}^{\infty} \bar{\alpha}_{n} y^{n}=-\left(\log \mathcal{G}\left(\mathcal{F}^{[-1]}(y)\right)\right)^{\prime} \tag{6}\\
& \bar{B}(y)=\sum_{n=1}^{\infty} \bar{\beta}_{n} y^{n}=\left(\log \mathcal{F}^{[-1]}(y)\right)^{\prime}-\frac{1}{y} \tag{7}
\end{align*}
$$

A special application of the Lagrange series (see e.g., $[3,12]$) can now be used to determine the ordinary generating functions \bar{A} and \bar{B} for both cases R^{-1} and S^{-1}.
Theorem 1. Lagrange theorem and inversion [3, 12]
a) For $\widetilde{H}(x)=H(y(x))$ with implicit $y=y(x)=a+x \varphi(y)$ (here as f.p.s.) one has

$$
\begin{equation*}
\widetilde{H}(x)=H(a)+\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \frac{d^{n-1}}{d a^{n-1}}\left[\varphi^{n}(a) H^{\prime}(a)\right] \tag{8}
\end{equation*}
$$

b) With $a=0, y=y(x)=x \psi(x)$, and the compositional inverse $x=y^{[-1]}=x(y)$ it follows that

$$
\begin{align*}
\tilde{H}(y)=H(x(y)) & =H(0)+\left.\sum_{n=1}^{\infty} \frac{y^{n}}{n!} \frac{d^{n-1}}{d a^{n-1}}\left[\left(\frac{1}{\psi(a)}\right)^{n} H^{\prime}(a)\right]\right|_{a=0} \\
& =H(0)+\sum_{n=1}^{\infty} \frac{y^{n}}{n!}(n-1)!\left[a^{n-1)}\right]\left[\left(\frac{1}{\psi(a)}\right)^{n} H^{\prime}(a)\right] \tag{9}
\end{align*}
$$

where $\left[a^{n}\right] h(a)$ picks the coefficient of a^{n} of a f.p.s. $h=h(a)$.
Applying this theorem, part b) to $y=y(x)=x \psi(x)$ with the Riordan or Sheffer function $\psi=\widehat{\mathcal{F}}$, and choosing $\frac{d}{d t} H(t)=\psi(t)$, we obtain with the compositional inverse $y^{[-1]}=\mathcal{F}^{[-1]}$ of $y=y(x)=\mathcal{F}(x)=x \widehat{\mathcal{F}}(x)$, and after differentiation, the following proposition for the o.g.f. \mathcal{T} of the sequence $\left\{t_{n}\right\}_{n=0}^{\infty}$.

Proposition 2. The o.g.f. $T(y)=\sum_{n=0}^{\infty} t_{n} y^{n}$ with $t_{n}:=\left.\frac{1}{n!} \frac{d^{n}}{d t^{n}} \frac{1}{(\hat{\mathcal{F}}(t))^{n}}\right|_{t=0}$ obeys

$$
\begin{equation*}
T(y)=\widehat{\mathcal{F}}\left(\mathcal{F}^{[-1]}(y)\right)\left(\mathcal{F}^{[-1]}(y)\right)^{\prime}=\left.\frac{\widehat{\mathcal{F}}(x)}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}^{[-1]}(y)}=\left.\frac{y}{\mathcal{F}^{[-1]}(y)} \frac{1}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}[-1]}(y) \tag{10}
\end{equation*}
$$

Proof. With the choice $\frac{d}{d t} H(t)=\widehat{\mathcal{F}}(t)$ we have from the first version of eq. 9

$$
\begin{equation*}
\tilde{H}(y)=H\left(F^{[-1]}(y)\right)=H(0)+\sum_{n=1}^{\infty} \frac{y^{n}}{n!}\left[\frac{d^{n-1}}{d t^{n-1}}\left(\frac{1}{\widehat{\mathcal{F}}(t)}\right)^{n-1}\right]_{t=0} \tag{11}
\end{equation*}
$$

The sum becomes $\sum_{n=0}^{\infty} \frac{y^{n+1}}{n+1}\left[\frac{1}{n!} \frac{d^{n}}{d t^{n}}\left(\frac{1}{\widehat{\mathcal{F}}(t)}\right)^{n}\right]_{t=0}=\int d y \sum_{n=0}^{\infty} y^{n} t_{n}$, without worrying about interchanging the sum with the integral for a formal power series. Differentiation on both sides leads, with the chain rule for $\frac{d}{d y} H\left(F^{[-1]}(y)\right)$, and for the derivative of the compositional inverse, to

$$
\begin{equation*}
T(y)=\widehat{\mathcal{F}}\left(\mathcal{F}^{[-1]}(y)\right) \frac{d}{d y} \mathcal{F}^{[-1]}(y)=\left.\frac{\widehat{\mathcal{F}}(x)}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}^{[-1]}(y)}=\left.\frac{y}{\mathcal{F}^{[-1]}(y)} \frac{1}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}^{[-1]}(y)} \tag{12}
\end{equation*}
$$

The o.g.f. $T(y)$ coincides up to the offset with o.g.f. for $\bar{B}(y)$.

Corollary 3.

$$
\begin{align*}
\bar{B}(y) & =\frac{1}{y}(T(y)-1)=\left.\frac{1}{\mathcal{F}^{[-1]}(y)} \frac{1}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}^{[-1]}(y)}-\frac{1}{y} \tag{13}\\
\bar{\beta}_{n} & =t_{n+1}, \text { for } \mathrm{n} \in \mathbb{N}_{0}, \text { and } \bar{\beta}_{-1}=1 \tag{14}
\end{align*}
$$

The other Boas-Buck o.g.f. \bar{A} of eq. 6 is first rewritten, in order to choose the function $H(t)$ appropriately. The chain rule for $h(y):=\mathcal{G}\left(\mathcal{F}^{[-1]}(y)\right)$, and for the derivative of the compositional inverse, leads to

$$
\begin{equation*}
\bar{A}(y)=-\frac{h^{\prime}(y)}{h(y)}=-\left.\frac{(\log \mathcal{G}(x))^{\prime}}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}^{-1}(y)} \tag{15}
\end{equation*}
$$

Because $\frac{d}{d y} H\left(\mathcal{F}^{[-1]}(y)\right)=\left.\frac{H^{\prime}(x)}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}^{[-1]}(y)}$ the choice in eq. 9 is now $H(t)=-\log \mathcal{G}(t)$, with $H(0)=0$ from the assumed $\mathcal{G}(0)=1$.
After these preliminaries one finds, with $y=y(x)=x \widehat{\mathcal{F}}(x)$ as above, after differentiating eg. 9

$$
\begin{equation*}
\left.\frac{-(\log \mathcal{G}(x))^{\prime}}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}^{[-1]}(y)}=\sum_{n=0}^{\infty} y^{n}\left[\frac{1}{n!} \frac{d^{n}}{d t^{n}} \frac{-(\log \mathcal{G}(t))^{\prime}}{(\widehat{\mathcal{F}}(t))^{n+1}}\right]_{t=0} \tag{16}
\end{equation*}
$$

This implies the following Proposition.
Proposition 4. The o.g.f. $S(y)=\sum_{n=0}^{\infty} s_{n} y^{n}$ with $s_{n}:=\left.\frac{1}{n!} \frac{d^{n}}{d t^{n}} \frac{-(\log \mathcal{G}(t))^{\prime}}{(\widehat{\mathcal{F}}(t))^{n+1}}\right|_{t=0}$ obeys

$$
\begin{equation*}
S(y)=\left.\frac{-(\log \mathcal{G}(x))^{\prime}}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}^{[-1]}(y)} \tag{17}
\end{equation*}
$$

Corollary 5. The o.g.f. $S(y)$ coincides with the o.g.f. $\bar{A}(y)$, and $\bar{\alpha}_{n}=s_{n}$ for $n \in \mathbb{N}_{0}$.
For the Bell or Narumi sub-groups, with $\mathcal{G}=\widehat{\mathcal{F}}$ the generating functions for the Boas-Buck sequences simplify.

Corollary 6. Boas-Buck sequences for inverse Bell- or Narumi-type matrices

$$
\begin{align*}
\bar{A}(y) & =\bar{B}(y)=-\left.\frac{(\log \widehat{\mathcal{F}}(x))^{\prime}}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}^{-1}(y)}=\left.\frac{1}{\mathcal{F}^{[-1]}(y)} \frac{1}{\mathcal{F}^{\prime}(x)}\right|_{x=\mathcal{F}^{[-1]}(y)}-\frac{1}{y} \tag{18}\\
\bar{\alpha}_{n} & =\bar{\beta}_{n}=\left.\frac{1}{(n+1)!} \frac{d^{n+1}}{d t^{n+1}} \frac{1}{(\widehat{\mathcal{F}}(t))^{n+1}}\right|_{t=0} \tag{19}
\end{align*}
$$

Proof. For the \mathcal{G} function of the inverse matrix, $\mathcal{G}_{\backslash \backslash \sqsubseteq}$, of a Bell or Narumi matrix $(\mathcal{G}, \mathcal{F})$ one has $\mathcal{G}_{\text {inv }}(y)=$ $\frac{1}{\mathcal{G}\left(\mathcal{F}^{[-1]}(y)\right)}=\frac{\mathcal{F}^{[-1]}(y)}{y}$ because the \mathcal{F} function of the inverse matrix is $\mathcal{F}^{[-1]}$. In this sub-group $\bar{A}(y)=\bar{B}(y)$ from the defining eqs. 6 and 7 . To see that indeed $\bar{\beta}_{n}=\bar{\alpha}_{n}$ one computes the first inner derivative and splits of the logarithmic derivative of \mathcal{F}.

Corollary 7. Boas-Buck sequences for inverse Jabotinsky-type matrices

$$
\begin{align*}
\bar{A}(y) & =0, \quad \bar{B}(y)=\left.\frac{1}{f^{[-1]}(y)} \frac{1}{f^{\prime}(x)}\right|_{x=f^{[-1]}(y)}-\frac{1}{y} \tag{20}\\
\bar{\alpha}_{n} & =0, \quad \bar{\beta}_{0}=0, \quad \text { and } \bar{\beta}_{n-1}=\left.\frac{1}{n!} \frac{d^{n}}{d t^{n}} \frac{1}{(\widehat{f}(t))^{n}}\right|_{t=0}, \quad \text { for } n \in \mathbb{N} \tag{21}
\end{align*}
$$

2 Examples

A) Riordan case

 $R^{-1}(n, m)=(-1)^{n-m} R(n, m)=(-1)^{n-m}\binom{n}{m}$.

$$
\begin{align*}
A(x) & =B(x)=\frac{1}{1-x}=\hat{F}(x), \quad \bar{A}(y)=\bar{B}(y)=\frac{-1}{1+y} \tag{22}\\
\alpha_{n} & =\beta_{n}=1, \quad \bar{\alpha}_{n}=\bar{\beta}_{n}=(-1)^{n+1}, \text { for } n \in \mathbb{N}_{0} \tag{23}
\end{align*}
$$

In this case the result from the Lagrange series eq. 19 is $\left[t^{n+1}\right](1+t)^{n+1}$, the coefficient of t^{n+1} which is $(-1)^{n+1}$. The Boas-Buck column recurrence reduces to the binomial identity derived from the Boas-Buck column recurrence for the Pascal columns

$$
\begin{equation*}
\binom{n}{m}=\sum_{k=m}^{n-1}\binom{k}{m}, \text { for } m \in \mathbb{N}_{0}, \text { and } n \geq m+1 \tag{24}
\end{equation*}
$$

This identity is a rewritten form of the one found in [4] on p. 161.
2) $R=\left(\frac{1}{(1-x)^{2}}, \frac{x}{1-x}\right)=\underline{\text { A135278 }}$, with the inverse Riordan matrix $R^{-1}=\left(\frac{1}{(1+x)^{2}}, \frac{x}{1+x}\right)$.

$$
\begin{align*}
A(x) & =\frac{2}{1-x}, \quad B(x)=\frac{1}{1-x}=\hat{F}(x), \quad \bar{A}(y)=-2 \frac{1}{1+y} \cdot \bar{B}(y)=-\frac{1}{1+y} \tag{25}\\
\alpha_{n} & =2, \quad \beta_{n}=1, \quad \bar{\alpha}_{n}=2(-1)^{n+1}, \quad \bar{\beta}_{n}=(-1)^{n+1}, \text { for } n \in \mathbb{N}_{0} \tag{26}
\end{align*}
$$

The result from the Lagrange series for $\bar{\alpha}_{n}$, Proposition 4 and Corollary 5 , is $\left[t^{n}\right]\left(-2(1+t)^{n}\right)$, which is $-2(-1)^{n}$; and for $\bar{\beta}_{n-1}$, from Proposition 2 and Corollary 3, it is $\left[t^{n}\right]\left((1+t)^{n}\right)$, which is $(-1)^{n}$.
3) Bell-type $R=\left(\frac{1}{1-x^{2}-x^{3}}, \frac{x}{1-x^{2}-x^{3}}\right)=\underline{\text { A104578 }}$ (Padovan), and $R^{-1}=(h(y), y h(y))$, with $h(y):=\frac{F^{[-1]}(y)}{y}$, where $F(x)=\frac{x}{1-x^{2}-x^{3}}$. The expansion of f is given in $\underline{\text { A319201 }}=\{1,0,-1,-1,2,5,-2,-21,-14,72,138, \ldots\}$.

$$
\begin{align*}
A(x) & =B(x)=\frac{x(2+3 x)}{1-x^{2}-x^{3}}, \bar{A}(y)=\bar{B}(y)=\left(1 /\left(1 / h(y)+y^{2} h(y)+2 y^{3} h(y)^{2}\right)-1\right) / y, \tag{27}\\
\alpha_{n} & =\beta_{n}=\underline{A 001608}(n+1), \quad \bar{\alpha}_{n}=\bar{\beta}_{n}=\underline{A 319204}(n), \text { for } n \in \mathbb{N}_{0} . \tag{28}
\end{align*}
$$

In the formula for $\bar{A}(y)=\bar{B}(y)=(\log (h(y)))^{\prime}$ from eq. 18 the following identity for $h(x)$, implied by the equation for $F^{[-1]}$, can be used repeatedly to reduce powers of f to $h^{2}, h, 1$.

$$
\begin{equation*}
h^{3}(y)=\frac{1}{y^{3}}\left(-(y h(y))^{2}-h(y)+1\right) \tag{29}
\end{equation*}
$$

The result for $\bar{\alpha}_{n}=\bar{\beta}_{n}$ from the Lagrange approach series $s_{n}=\bar{\alpha}_{n}$ of Proposition 4 is $\left[t^{n}\right]\left(-t(2+3 t)\left(1-t^{2}-\right.\right.$ $\left.t^{3}\right)^{n}$), the coefficient of t^{n}, which is $\underline{A 319204}(n)=\{0,-2,-3,6,20,-5,-105,-98, \ldots\}$. However, the result given in eq. 19 for $\bar{\beta}_{n-1}=t_{n}$ from Proposition 2, is the simpler, i.e., $\left[t^{n}\right]\left(1-t^{2}-t^{3}\right)^{n}$, for $n \in \mathbb{N}$. This can be computed from the multinomial formula for $(x 1+x 2+x 3)^{n}$, setting $x 1=1, x 2=-t^{2}$ and $x 3=-t^{3}$. This leads to

$$
\begin{equation*}
\bar{\beta}_{n-1}=\sum_{2 e 2+3 e 3=n}(-1)^{e 2+e 3} \frac{n!}{(n-(e 2+e 3))!e 2!e 3!} \tag{30}
\end{equation*}
$$

with nonnegative integers $e 2$ and $e 3$. The solutions for the pairs $(e 2, e 3)$ are given in table $\mathbf{A 3 2 1 2 0 1}$, and the corresponding (unsigned) multinomials are found in A321203. The parities of $e 2+e 3$ have to be taken into account in summing the entries of row n. E.g., , for $n=6$ one has for $\bar{\beta}_{5}=-5$ to sum $+15+(-20)=-5$ because the two $e 2, e 3$ pairs are $(0,2)$ and $(3,0)$.

B) Sheffer case

1) (Jabotinsky-type) $S 2=(1, \exp (x)-1)=\underline{\text { A048993 }}$ (Stirling2), and $S 2^{-1}=S 1=(1, \log (1+y))=$ A048994 (Stirling1)

$$
\begin{align*}
A(x) & =0, \quad B(x)=\frac{1-e^{x}+x e^{x}}{x\left(e^{x}-1\right)}, \quad \bar{A}(y)=0, \bar{B}(y)=\frac{1}{\log (1+y)(1+y)}-\frac{1}{y} \tag{31}\\
\alpha_{n} & =0, \quad \beta_{n}=\frac{(-1)^{n+1} \underline{A 060054}(n+1)}{\underline{A 227830}(n+1)}=\frac{(-1)^{n+1} \text { Bernoulli }(n+1)}{(n+1)!} \text { for } n \in \mathbb{N}_{0}, \tag{32}\\
\bar{\alpha}_{n} & =0, \quad \bar{\beta}_{n}=\frac{(-1)^{n+1} \underline{A 002208}(n+1)}{\underline{A 002209}(n+1)}, \text { for } n \in \mathbb{N}_{0} . \tag{33}
\end{align*}
$$

The formula $\bar{\beta}_{n-1}=t_{n}$, for $n \in \mathbb{N}$, with t_{n} from Proposition 2 of the Lagrange series approach, needs (2n)-fold application of Hôpital's rule.
2) $S[3,1]=\left(e^{x}, e^{3 x}-1\right)=\underline{\text { A282629 }}$, and the inverse matrix $S 1[3,1]=\left(\frac{1}{1+y)^{1 / 3}}, \frac{1}{3} \log (1+x)\right)$ with $S 1[3,1](n, k)=(-1)^{n-k} \underline{A 286718}(n, k) / 3^{n}$.

$$
\begin{align*}
A(x) & =1, \quad B(x)=\frac{3 x e^{3 x}-e^{3 x}+1}{x\left(e^{3 x}-1\right)}, \bar{A}(y)=-\frac{1}{3(1+x)}, \bar{B}(y)=\frac{y-(1+y) \log (1+y)}{y(1+y) \log (1+y)}, \tag{34}\\
\alpha_{0} & =1, \alpha_{n}=0, \text { for } n \in \mathbb{N}, \quad \beta_{n}=\frac{3 \cdot \underline{A 321329}(n)}{\underline{\text { A321330 }}(n)},=(-3)^{n+1} \frac{\text { Bernoulli }(n+1)}{(n+1)!} \text { for } n \in \mathbb{N}_{0}, \tag{35}\\
\bar{\alpha}_{n} & =\frac{(-1)^{(n+1)}}{3}, \quad \bar{\beta}_{n}=\frac{(-1)^{n+1} \underline{A 002208}(n+1)}{\underline{A 002209}(n+1)}, \text { for } n \in \mathbb{N}_{0} . \tag{36}
\end{align*}
$$

Note that the o.g.f. $\bar{B}(y)$ coincides with the one of Example $\mathbf{1})$.
The formula $\bar{\alpha}_{n}=s_{n}=\frac{1}{n!} \frac{d^{n}}{d t^{n}}\left(-\left(\frac{t}{e^{3 t}-1}\right)^{n+1}\right)$ from Proposition 4 needs $(2 n+1)$-fold application of
Hôpital's rule. E.g., for $n=1$ one obtains $\bar{\alpha}_{1}=\frac{54}{162}=\frac{1}{3}$.
The formula $\bar{\beta}_{n-1}=t_{n}=\frac{1}{n!} \frac{d^{n}}{d t^{n}}\left(\frac{t}{e^{3 t}-1}\right)^{n}$, for $n \geq 1$, from Proposition 2, needs ($2 n$)-fold application of Hôpital's rule. E.g., for $n=2$ one obtains, after 4 -fold application of Hôpital's rule, $\bar{\beta}_{1}=\frac{810}{1944}=\frac{5}{12}$.
3) (Narumi type) $N=\left(\frac{\log (1+x)}{x}, \log (1+x)\right)=\frac{1}{n+1} \underline{\text { A028421 }}(n, m)(-1)^{n-m}($ Narumi $a=-1)$, and $N^{-1}=\left(\frac{e^{y}-1}{y}, e^{y}-1\right), N^{-1}(n, m)=\frac{1}{n+1} \underline{\operatorname{A} 321331}(n, m)=\frac{m+1}{n+1} S 2(n+1, m+1)$ with $S 2=\underline{\text { A048993 }}$, (Stirling2).

$$
\begin{align*}
A(x) & =B(x)=\frac{1}{(1+x) \ln (1+x)}-\frac{1}{x}, \quad \bar{A}(y)=\bar{B}(y)=\frac{e^{y}}{e^{y}-1}-\frac{1}{y} \tag{37}\\
\alpha & =\beta_{n}=\frac{(-1)^{n+1} \underline{A 002208}(n+1)}{\underline{A 002209}(n+1)}, \text { for } n \in \mathbb{N}_{0} \tag{38}\\
\bar{\alpha}_{0} & =\bar{\beta}_{0}=\frac{1}{2}, \bar{\alpha}_{n}=\bar{\beta}_{n}=\frac{(-1)^{n+1} \underline{A 060054}(n+1)}{\underline{A 227830(n+1)}}=\frac{(-1)^{n+1} \operatorname{Bernoulli}(n+1)}{(n+1)!} \text { for } n \in \mathbb{N}_{0}, \tag{39}
\end{align*}
$$

$A(x)=B(x)$ coincides with $\bar{B}(x)$ of Example 1), and $\bar{A}(x)=\bar{B}(x)$ coincides with $B(x)$ of Example $\mathbf{1})$.
The formula $\bar{\beta}_{n-1}=t_{n}$, for $n \in \mathbb{N}$, with t_{n} from Proposition 2 of the Lagrange series approach, needs (2n)-fold application of Hôpital's rule.

3 Acknowledgement

All calculations were done with the help of Maple13 [7].

References

[1] Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17-21, (the last sign in eq. (6.11) should be -).
[2] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978, Ch. VI, 1., pp. 170-172.
[3] G. M. Fichtenholz, Differential- und Integralrechnung II, p. 523, VEB Deutscher Verlag der Wissenschaften, Berlin, 1964.
[4] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd edition, 1994, Addison-Weseley, Reading, Massachusetts, 1991.
[5] Donald E. Knuth, Convolution polynomials, Mathematica J. 2 (1992), no. 4, 67-7. https://arxiv.org/abs/math/9207221.
[6] Wolfdieter Lang, Sheffer $a-$ and z-sequences, https://oeis.org/A006232/a006232.pdf.
[7] Maple ${ }^{T M}$, http://www.maplesoft.com/.
[8] The On-Line Encyclopedia of Integer Sequences (2010), published electronically at http://oeis.org.
[9] Earl D. Rainville,Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140-146.
[10] Steven Roman, The Umbral Calculus, Academic Press, London, 1984.
[11] L. W. Shapiro, S. Getu, W.-J. Woan, and L. C. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), 229-239.
http://www.sciencedirect.com/science/article/pii/0166218X9190088E?via\%3Dihub.
[12] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth ed., Cambridge, at the University Press, 1958, p. 133.

2010 Mathematics Subject Classification: Primary 05A15, 11B83, 11B37, Secondary 11B83.
Keywords: Riordan group, Sheffer group, Jabotinsky group, Narumi group, Pascal triangle, Stirling triangles, Recurrences.

OEIS [8] A numbers:
$\underline{A 001608}, \underline{A 002208}, \underline{A 002209}, \underline{A 007318}, \underline{A} 048993, \underline{A 048994}, \underline{A} 060054, \underline{A 104578}, \underline{A 135278}, \underline{A 227830}, \underline{A} 282629, \underline{A 028421}$,

[^0]: ${ }^{1}$ wolfdieter.lang@partner.kit.edu, http://www.itp.kit.edu/~wl

