On the Generating Functions of the Boas-Buck Sequences for the Inverse of Riordan and Sheffer Matrices

Wolfdieter L a n g 1

Abstract

By a special application of the Lagrange series the generating functions for the Boas-Buck sequences for inverse Riordan or Sheffer matrices can be rewritten, and the coefficients are obtained from the functions which determine the original Riordan or Sheffer matrix. The Boas-Buck sequences provide recurrences for each column sequence of such matrices. Several examples for the determination of the sequences for such inverse matrices are given.

1 Introduction and Summary

The Boas-Buck identity [1, 9] for ordinary and exponential lower triangular convolution matrices of the Riordan R or Sheffer S type, respectively, [10, 11, 5] imply a recurrence for these matrices involving the two Boas-Buck sequences $\alpha = \{\alpha_n\}_{n=0}^{\infty}$ and $\beta = \{\beta_n\}_{n=0}^{\infty}$. The ordinary generating functions (o.g.f., for short) A and B of these sequences for both types of convolution matrices are given for $R = (G(x), x \hat{F}(x))$ or $S = (g(x), x \hat{f}(x))$ with formal power series $(f.p.s., for short) G, \hat{F} \text{ or } g, \hat{f}$ are given as follows. Here \hat{F} or \hat{f} , and usually also G or g, start with 1. For G or g the notation \mathcal{G} , and for $x \hat{F}$ or $x \hat{f}$ the notation \mathcal{F} will be used, as well as $\hat{\mathcal{F}}$ for $\mathcal{F} = x \hat{\mathcal{F}}$. The notation of Rainville will be used.

$$A(x) := \sum_{n=1}^{\infty} \alpha_n x^n = (\log \mathcal{G}(x))', \qquad (1)$$

$$B(x) = \sum_{n=1}^{\infty} \beta_n x^n = (\log \widehat{\mathcal{F}}(x))'.$$
(2)

For completeness the recurrence formulae for the R and S matrix elements R(n, m) and S(n, m), as lower triangular matrices, vanishing for n < m, are also given.

$$R(n,m) = \frac{1}{n-m} \sum_{k=m}^{n-1} \left(\alpha_{n-1-k} + m \,\beta_{n-1-k} \right) R(k,m), \quad \text{for } n \in \mathbb{N}, \text{ and } m = 0, 1, ..., n-1, \tag{3}$$

$$S(n,m) = \frac{n!}{n-m} \sum_{k=m}^{n-1} \frac{1}{k!} \left(\alpha_{n-1-k} + m \beta_{n-1-k} \right) S(k,m), \text{ for } n \in \mathbb{N}, \text{ and } m = 0, 1, ..., n-1,$$
(4)

(5)

with the diagonal elements R(n, n) or S(n, n) as inputs.

These matrices form a group, the *Riordan* or *Sheffer* group. These square matrices are infinite dimensional but one can consider any finite dimension N for practical purposes. Subgroups of special interest are the so-called associated groups with $\mathcal{G} = 1$, and the *Bell*, resp. *Narumi*, groups with $\hat{\mathcal{F}} = \mathcal{G}$.

In this note we are interested in inverse *Riordan* R^{-1} and *Sheffer* matrices S^{-1} . These inverse matrices are denoted by $R^{-1} = \left(\frac{1}{G \circ F^{[-1]}}, F^{[-1]}\right)$ or $S^{-1} = \left(\frac{1}{g \circ f^{[-1]}}, f^{[-1]}\right)$, were the compositional inverse of the *f.p.s.* F and f are denoted by $F^{[-1]}$ and $f^{[-1]}$, respectively. The composition symbol \circ means that $(g \circ f)(x) := g(f(x))$. Thus $f \circ f^{[-1]} = id = f^{[-1]} \circ f$.

¹ wolfdieter.lang@partner.kit.edu, http://www.itp.kit.edu/~wl

In the Sheffer case the subgroup of the associated matrices J = (1, f) is also called Jabotinsky subgroup, It appears more often than the Narumi case. For this case the inverse matrix is $J^{-1} = (1, f^{[-1]}(y))$. These two cases are closely related: for $N = (g(x), x g(x)) = \left(\frac{f(x)}{x}, f(x)\right)$ and J = (1, f(x)) the matrix elements are related by $N(n, m) = \frac{m+1}{n+1}J(n+1, m+1)$, and the row polynomials are $Npol(n, x) = \frac{1}{n+1}Jpol'(n+1, x)$. This follows from the corresponding *e.g.f.* s of the column sequences, and the definition of the row polynomials.

The generating functions for the Boas-Buck sequences (we use the notations $\overline{\alpha}$, $\overline{\beta}$, \overline{A} , and \overline{B}) for these inverse matrices, using, as above, \mathcal{G} for G or g, and $\mathcal{F}^{[-1]}$ for $F^{[-1]}$ or $f^{[-1]}$ are then

$$\overline{A}(y) = \sum_{n=1}^{\infty} \overline{\alpha}_n y^n = -(\log \mathcal{G}(\mathcal{F}^{[-1]}(y)))', \qquad (6)$$

$$\overline{B}(y) = \sum_{n=1}^{\infty} \overline{\beta}_n y^n = (\log \mathcal{F}^{[-1]}(y))' - \frac{1}{y}.$$
(7)

A special application of the Lagrange series (see e.g., [3, 12]) can now be used to determine the ordinary generating functions \overline{A} and \overline{B} for both cases R^{-1} and S^{-1} .

Theorem 1. Lagrange theorem and inversion [3, 12]

a) For H(x) = H(y(x)) with implicit $y = y(x) = a + x \varphi(y)$ (here as f.p.s.) one has

$$\widetilde{H}(x) = H(a) + \sum_{n=1}^{\infty} \frac{x^n}{n!} \frac{d^{n-1}}{da^{n-1}} \left[\varphi^n(a) \, H'(a) \right] \,. \tag{8}$$

b) With $a = 0, y = y(x) = x \psi(x)$, and the compositional inverse $x = y^{[-1]} = x(y)$ it follows that

$$\tilde{H}(y) = H(x(y)) = H(0) + \sum_{n=1}^{\infty} \frac{y^n}{n!} \frac{d^{n-1}}{da^{n-1}} \left[\left(\frac{1}{\psi(a)} \right)^n H'(a) \right] \Big|_{a=0} = H(0) + \sum_{n=1}^{\infty} \frac{y^n}{n!} (n-1)! [a^{n-1}] \left[\left(\frac{1}{\psi(a)} \right)^n H'(a) \right]$$
(9)

where $[a^n] h(a)$ picks the coefficient of a^n of a f.p.s. h = h(a).

Applying this theorem, part **b**) to $y = y(x) = x \psi(x)$ with the *Riordan* or Sheffer function $\psi = \hat{\mathcal{F}}$, and choosing $\frac{d}{dt} H(t) = \psi(t)$, we obtain with the compositional inverse $y^{[-1]} = \mathcal{F}^{[-1]}$ of $y = y(x) = \mathcal{F}(x) = x \hat{\mathcal{F}}(x)$, and after differentiation, the following proposition for the *o.g.f.* \mathcal{T} of the sequence $\{t_n\}_{n=0}^{\infty}$.

Proposition 2. The o.g.f. $T(y) = \sum_{n=0}^{\infty} t_n y^n$ with $t_n := \frac{1}{n!} \frac{d^n}{dt^n} \frac{1}{(\widehat{\mathcal{F}}(t))^n} \Big|_{t=0}$ obeys $T(y) = \widehat{\mathcal{F}}(\mathcal{F}^{[-1]}(y)) \left(\mathcal{F}^{[-1]}(y)\right)' = \frac{\widehat{\mathcal{F}}(x)}{\mathcal{F}'(x)} \Big|_{x=\mathcal{F}^{[-1]}(y)} = \frac{y}{\mathcal{F}^{[-1]}(y)} \frac{1}{\mathcal{F}'(x)} \Big|_{x=\mathcal{F}^{[-1]}(y)}.$ (10)

Proof. With the choice $\frac{d}{dt}H(t) = \widehat{\mathcal{F}}(t)$ we have from the first version of eq. 9

$$\tilde{H}(y) = H(F^{[-1]}(y)) = H(0) + \sum_{n=1}^{\infty} \frac{y^n}{n!} \left[\frac{d^{n-1}}{dt^{n-1}} \left(\frac{1}{\widehat{\mathcal{F}}(t)} \right)^{n-1} \right]_{t=0}.$$
(11)

The sum becomes $\sum_{n=0}^{\infty} \frac{y^{n+1}}{n+1} \left[\frac{1}{n!} \frac{d^n}{dt^n} \left(\frac{1}{\widehat{\mathcal{F}}(t)} \right)^n \right]_{t=0} = \int dy \sum_{n=0}^{\infty} y^n t_n$, without worrying about interchanging the sum with the integral for a formal power series. Differentiation on both sides leads, with the chain rule for $\frac{d}{dy} H(F^{[-1]}(y))$, and for the derivative of the compositional inverse, to

$$T(y) = \left. \widehat{\mathcal{F}}(\mathcal{F}^{[-1]}(y)) \frac{d}{dy} \mathcal{F}^{[-1]}(y) = \left. \frac{\widehat{\mathcal{F}}(x)}{\mathcal{F}'(x)} \right|_{x = \mathcal{F}^{[-1]}(y)} = \left. \frac{y}{\mathcal{F}^{[-1]}(y)} \frac{1}{\mathcal{F}'(x)} \right|_{x = \mathcal{F}^{[-1]}(y)}.$$
(12)

The o.g.f. T(y) coincides up to the offset with o.g.f. for $\overline{B}(y)$.

Corollary 3.

$$\overline{B}(y) = \frac{1}{y} (T(y) - 1) = \frac{1}{\mathcal{F}^{[-1]}(y)} \frac{1}{\mathcal{F}'(x)} \Big|_{x = \mathcal{F}^{[-1]}(y)} - \frac{1}{y} , \qquad (13)$$

$$\overline{\beta}_n = t_{n+1}, \text{ for } n \in \mathbb{N}_0, \text{ and } \overline{\beta}_{-1} = 1.$$
 (14)

The other Boas-Buck o.g.f. \overline{A} of eq. 6 is first rewritten, in order to choose the function H(t) appropriately. The chain rule for $h(y) := \mathcal{G}(\mathcal{F}^{[-1]}(y))$, and for the derivative of the compositional inverse, leads to

$$\overline{A}(y) = -\frac{h'(y)}{h(y)} = -\frac{(\log \mathcal{G}(x))'}{\mathcal{F}'(x)}\Big|_{x = \mathcal{F}^{-1}(y)}.$$
(15)

Because $\frac{d}{dy} H(\mathcal{F}^{[-1]}(y)) = \frac{H'(x)}{\mathcal{F}'(x)}\Big|_{x=\mathcal{F}^{[-1]}(y)}$ the choice in eq.9 is now $H(t) = -\log \mathcal{G}(t)$, with H(0) = 0 from the assumed $\mathcal{G}(0) = 1$.

After these preliminaries one finds, with $y = y(x) = x \widehat{\mathcal{F}}(x)$ as above, after differentiating eg. 9

$$\frac{-(\log \mathcal{G}(x))'}{\mathcal{F}'(x)}\Big|_{x = \mathcal{F}^{[-1]}(y)} = \sum_{n=0}^{\infty} y^n \left[\frac{1}{n!} \frac{d^n}{dt^n} \frac{-(\log \mathcal{G}(t))'}{(\hat{\mathcal{F}}(t))^{n+1}}\right]_{t=0}.$$
 (16)

This implies the following *Proposition*.

Proposition 4. The o.g.f.
$$S(y) = \sum_{n=0}^{\infty} s_n y^n$$
 with $s_n := \frac{1}{n!} \frac{d^n}{dt^n} \frac{-(\log \mathcal{G}(t))'}{(\widehat{\mathcal{F}}(t))^{n+1}}\Big|_{t=0}$ obeys

$$S(y) = \frac{-(\log \mathcal{G}(x))'}{\mathcal{F}'(x)}\Big|_{x=\mathcal{F}^{[-1]}(y)}.$$
(17)

Corollary 5. The o.g.f. S(y) coincides with the o.g.f. $\overline{A}(y)$, and $\overline{\alpha}_n = s_n$ for $n \in \mathbb{N}_0$.

For the Bell or Narumi sub-groups, with $\mathcal{G} = \widehat{\mathcal{F}}$ the generating functions for the Boas-Buck sequences simplify.

Corollary 6. Boas-Buck sequences for inverse Bell- or Narumi-type matrices

$$\overline{A}(y) = \overline{B}(y) = -\frac{(\log \widehat{\mathcal{F}}(x))'}{\mathcal{F}'(x)}\Big|_{x = \mathcal{F}^{-1}(y)} = \frac{1}{\mathcal{F}^{[-1]}(y)} \frac{1}{\mathcal{F}'(x)}\Big|_{x = \mathcal{F}^{[-1]}(y)} - \frac{1}{y},$$
(18)

$$\overline{\alpha}_n = \overline{\beta}_n = \frac{1}{(n+1)!} \frac{d^{n+1}}{dt^{n+1}} \frac{1}{(\widehat{\mathcal{F}}(t))^{n+1}} \Big|_{t=0}.$$
(19)

Proof. For the \mathcal{G} function of the inverse matrix, $\mathcal{G}_{\backslash \subseteq}$, of a Bell or Narumi matrix $(\mathcal{G}, \mathcal{F})$ one has $\mathcal{G}_{inv}(y) = \frac{1}{\mathcal{G}(\mathcal{F}^{[-1]}(y))} = \frac{\mathcal{F}^{[-1]}(y)}{y}$ because the \mathcal{F} function of the inverse matrix is $\mathcal{F}^{[-1]}$. In this sub-group $\overline{A}(y) = \overline{B}(y)$ from the defining eqs. 6 and 7. To see that indeed $\overline{\beta}_n = \overline{\alpha}_n$ one computes the first inner derivative and splits of the logarithmic derivative of \mathcal{F} .

Corollary 7. Boas-Buck sequences for inverse Jabotinsky-type matrices

$$\overline{A}(y) = 0, \quad \overline{B}(y) = \frac{1}{f^{[-1]}(y)} \frac{1}{f'(x)} \Big|_{x = f^{[-1]}(y)} - \frac{1}{y},$$
(20)

$$\overline{\alpha}_n = 0, \ \overline{\beta}_0 = 0, \ \text{and} \ \overline{\beta}_{n-1} = \frac{1}{n!} \frac{d^n}{dt^n} \frac{1}{(\widehat{f}(t))^n} \Big|_{t=0}, \ \text{for} \ n \in \mathbb{N}.$$
 (21)

2 Examples

Æ

A) Riordan case

1) Bell-type $R = \left(\frac{1}{1-x}, \frac{x}{1-x}\right) = \underline{A007318}$ (Pascal) matrix with its inverse $R^{-1} = \left(\frac{1}{1+t}, \frac{t}{1+t}\right)$ with elements $R^{-1}(n,m) = (-1)^{n-m} R(n,m) = (-1)^{n-m} \binom{n}{m}$.

$$A(x) = B(x) = \frac{1}{1-x} = \hat{F}(x), \ \overline{A}(y) = \overline{B}(y) = \frac{-1}{1+y},$$
(22)

$$\alpha_n = \beta_n = 1, \ \overline{\alpha}_n = \overline{\beta}_n = (-1)^{n+1}, \ \text{for} \ n \in \mathbb{N}_0.$$
(23)

In this case the result from the Lagrange series eq. 19 is $[t^{n+1}](1+t)^{n+1}$, the coefficient of t^{n+1} which is $(-1)^{n+1}$. The Boas-Buck column recurrence reduces to the binomial identity derived from the Boas-Buck column recurrence for the Pascal columns

$$\binom{n}{m} = \sum_{k=m}^{n-1} \binom{k}{m}, \text{ for } m \in \mathbb{N}_0, \text{ and } n \ge m+1.$$
(24)

This identity is a rewritten form of the one found in [4] on p. 161.

2)
$$R = \left(\frac{1}{(1-x)^2}, \frac{x}{1-x}\right) = \underline{A135278}$$
, with the inverse Riordan matrix $R^{-1} = \left(\frac{1}{(1+x)^2}, \frac{x}{1+x}\right)$.

$$A(x) = \frac{2}{1-x}, \quad B(x) = \frac{1}{1-x} = \hat{F}(x), \quad \overline{A}(y) = -2\frac{1}{1+y}, \quad \overline{B}(y) = -\frac{1}{1+y}, \quad (25)$$

$$\alpha_n = 2, \ \beta_n = 1, \ \overline{\alpha}_n = 2 \, (-1)^{n+1}, \ \overline{\beta}_n = (-1)^{n+1}, \ \text{for} \ n \in \mathbb{N}_0.$$
(26)

The result from the Lagrange series for $\overline{\alpha}_n$, Proposition 4 and Corollary 5, is $[t^n] (-2(1+t)^n)$, which is $-2(-1)^n$; and for $\overline{\beta}_{n-1}$, from Proposition 2 and Corollary 3, it is $[t^n] ((1+t)^n)$, which is $(-1)^n$.

3) Bell-type $R = \left(\frac{1}{1-x^2-x^3}, \frac{x}{1-x^2-x^3}\right) = \underline{A104578} (Padovan)$, and $R^{-1} = (h(y), y h(y))$, with $h(y) := \frac{F^{[-1]}(y)}{y}$, where $F(x) = \frac{x}{1-x^2-x^3}$. The expansion of f is given in $\underline{A319201} = \{1, 0, -1, -1, 2, 5, -2, -21, -14, 72, 138, \ldots\}$.

$$A(x) = B(x) = \frac{x(2+3x)}{1-x^2-x^3}, \ \overline{A}(y) = \overline{B}(y) = (1/(1/h(y)+y^2h(y)+2y^3h(y)^2)-1)/y,$$
(27)

$$\alpha_n = \beta_n = \underline{A001608}(n+1), \quad \overline{\alpha}_n = \overline{\beta}_n = \underline{A319204}(n), \quad \text{for } n \in \mathbb{N}_0.$$
(28)

In the formula for $\overline{A}(y) = \overline{B}(y) = (\log(h(y)))'$ from eq. 18 the following identity for h(x), implied by the equation for $F^{[-1]}$, can be used repeatedly to reduce powers of f to h^2 , h, 1.

$$h^{3}(y) = \frac{1}{y^{3}} \left(-(y h(y))^{2} - h(y) + 1 \right).$$
⁽²⁹⁾

The result for $\overline{\alpha}_n = \overline{\beta}_n$ from the Lagrange approach series $s_n = \overline{\alpha}_n$ of Proposition 4 is $[t^n] (-t(2+3t)(1-t^2-t^3)^n)$, the coefficient of t^n , which is <u>A319204</u> $(n) = \{0, -2, -3, 6, 20, -5, -105, -98, ...\}$. However, the result given in eq. 19 for $\overline{\beta}_{n-1} = t_n$ from Proposition 2, is the simpler, *i.e.*, $[t^n] (1 - t^2 - t^3)^n$, for $n \in \mathbb{N}$. This can be computed from the multinomial formula for $(x1 + x2 + x3)^n$, setting $x1 = 1, x2 = -t^2$ and $x3 = -t^3$. This leads to

$$\overline{\beta}_{n-1} = \sum_{2 e^2 + 3 e^3 = n} (-1)^{e^2 + e^3} \frac{n!}{(n - (e^2 + e^3))! e^{2!} e^{3!}},$$
(30)

with nonnegative integers e^2 and e^3 . The solutions for the pairs (e^2, e^3) are given in table <u>A321201</u>, and the corresponding (unsigned) multinomials are found in <u>A321203</u>. The parities of $e^2 + e^3$ have to be taken into account in summing the entries of row n. *E.g.*, for n = 6 one has for $\overline{\beta}_5 = -5$ to sum +15 + (-20) = -5 because the two e^2 , e^3 pairs are (0, 2) and (3, 0).

B) Sheffer case

1) (Jabotinsky-type) S2 = (1, exp(x) - 1) = A048993 (Stirling2), and $S2^{-1} = S1 = (1, \log(1 + y)) = A048994$ (Stirling1)

$$A(x) = 0, \quad B(x) = \frac{1 - e^x + x e^x}{x (e^x - 1)}, \quad \overline{A}(y) = 0, \quad \overline{B}(y) = \frac{1}{\log(1 + y)(1 + y)} - \frac{1}{y}, \quad (31)$$

$$\alpha_n = 0, \quad \beta_n = \frac{(-1)^{n+1} \underline{A060054}(n+1)}{\underline{A227830}(n+1)} = \frac{(-1)^{n+1} Bernoulli(n+1)}{(n+1)!} \text{ for } n \in \mathbb{N}_0, \quad (32)$$

$$\overline{\alpha}_n = 0, \ \overline{\beta}_n = \frac{(-1)^{n+1} \underline{A002208}(n+1)}{\underline{A002209}(n+1)}, \text{ for } n \in \mathbb{N}_0.$$
 (33)

The formula $\overline{\beta}_{n-1} = t_n$, for $n \in \mathbb{N}$, with t_n from Proposition 2 of the Lagrange series approach, needs (2n)-fold application of Hôpital's rule.

2) $S[3,1] = (e^x, e^{3x} - 1) = \underline{A282629}$, and the inverse matrix $S1[3,1] = \left(\frac{1}{1+y}\right)^{1/3}, \frac{1}{3}\log(1+x)\right)$ with $S1[3,1](n,k) = (-1)^{n-k} \underline{A286718}(n,k)/3^n.$

$$A(x) = 1, \quad B(x) = \frac{3xe^{3x} - e^{3x} + 1}{x(e^{3x} - 1)}, \quad \overline{A}(y) = -\frac{1}{3(1+x)}, \quad \overline{B}(y) = \frac{y - (1+y)\log(1+y)}{y(1+y)\log(1+y)}, \quad (34)$$

$$\alpha_0 = 1, \ \alpha_n = 0, \ \text{for} \ n \in \mathbb{N}, \ \ \beta_n = \frac{3 \cdot \underline{A321329}(n)}{\underline{A321330}(n)}, = (-3)^{n+1} \frac{Bernoulli(n+1)}{(n+1)!} \ \text{for} \ n \in \mathbb{N}_0, \ \ (35)$$

$$\overline{\alpha}_n = \frac{(-1)^{(n+1)}}{3}, \ \overline{\beta}_n = \frac{(-1)^{n+1} \underline{A002208(n+1)}}{\underline{A002209(n+1)}}, \text{ for } n \in \mathbb{N}_0.$$
(36)

Note that the o.g.f. $\overline{B}(y)$ coincides with the one of Example 1).

The formula $\overline{\alpha}_n = s_n = \frac{1}{n!} \frac{d^n}{dt^n} \left(-\left(\frac{t}{e^{3t}-1}\right)^{n+1} \right)$ from *Proposition* 4 needs (2n + 1)-fold application of Hôpital's rule. *E.g.*, for n = 1 one obtains $\overline{\alpha}_1 = \frac{54}{162} = \frac{1}{3}$. The formula $\overline{\beta}_{n-1} = t_n = \frac{1}{n!} \frac{d^n}{dt^n} \left(\frac{t}{e^{3t}-1}\right)^n$, for $n \ge 1$, from *Proposition* 2, needs (2n)-fold application of Hôpital's rule. *E.g.*, for n = 2 one obtains, after 4-fold application of Hôpital's rule, $\overline{\beta}_1 = \frac{810}{1944} = \frac{5}{12}$. **3)** (Narumi type) $N = \left(\frac{\log(1+x)}{x}, \log(1+x)\right) = \frac{1}{n+1} \underline{A028421}(n, m) (-1)^{n-m}$ (Narumi a = -1), and $N^{-1} = \left(\frac{e^y-1}{y}, e^y-1\right), N^{-1}(n, m) = \frac{1}{n+1} \underline{A321331}(n, m) = \frac{m+1}{n+1} S2(n+1, m+1)$ with $S2 = \underline{A048993}$, (Stirling2).

$$A(x) = B(x) = \frac{1}{(1+x)\ln(1+x)} - \frac{1}{x}, \quad \overline{A}(y) = \overline{B}(y) = \frac{e^y}{e^y - 1} - \frac{1}{y}, \quad (37)$$

$$\alpha = \beta_n = \frac{(-1)^{n+1} \underline{A002208(n+1)}}{\underline{A002209(n+1)}}, \text{ for } n \in \mathbb{N}_0,$$
(38)

$$\overline{\alpha}_0 = \overline{\beta}_0 = \frac{1}{2}, \ \overline{\alpha}_n = \overline{\beta}_n = \frac{(-1)^{n+1}\underline{A060054(n+1)}}{\underline{A227830(n+1)}} = \frac{(-1)^{n+1}Bernoulli(n+1)}{(n+1)!} \text{ for } n \in \mathbb{N}_0, \ (39)$$

A(x) = B(x) coincides with $\overline{B}(x)$ of Example 1), and $\overline{A}(x) = \overline{B}(x)$ coincides with B(x) of Example 1). The formula $\overline{\beta}_{n-1} = t_n$, for $n \in \mathbb{N}$, with t_n from Proposition 2 of the Lagrange series approach, needs (2n)-fold application of Hôpital's rule.

3 Acknowledgement

All calculations were done with the help of Maple13 [7].

References

- Ralph P. Boas, jr. and R. Creighton Buck, *Polynomial Expansions of analytic functions*, Springer, 1958, pp. 17 21, (the last sign in eq. (6.11) should be -).
- [2] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978, Ch. VI, 1., pp. 170-172.
- [3] G. M. Fichtenholz, Differential- und Integralrechnung II, p. 523, VEB Deutscher Verlag der Wissenschaften, Berlin, 1964.
- [4] R. L. Graham, D. E. Knuth and O. Patashnik, *Concrete Mathematics*, 2nd edition, 1994, Addison-Weseley, Reading, Massachusetts, 1991.
- [5] Donald E. Knuth, Convolution polynomials, Mathematica J. 2 (1992), no. 4, 67 7. https://arxiv.org/abs/math/9207221.
- [6] Wolfdieter Lang, Sheffer a- and z-sequences, https://oeis.org/A006232/a006232.pdf.
- [7] $Maple^{TM}$, http://www.maplesoft.com/.
- [8] The On-Line Encyclopedia of Integer Sequences (2010), published electronically at http://oeis.org.
- [9] Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 146.
- [10] Steven Roman, The Umbral Calculus, Academic Press, London, 1984.
- [11] L. W. Shapiro, S. Getu, W.-J. Woan, and L. C. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), 229-239.
 http://www.sciencedirect.com/science/article/pii/0166218X9190088E?via%3Dihub.
- [12] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth ed., Cambridge, at the University Press, 1958, p. 133.

2010 Mathematics Subject Classification: Primary 05A15, 11B83, 11B37, Secondary 11B83. Keywords: Riordan group, Sheffer group, Jabotinsky group, Narumi group, Pascal triangle, Stirling triangles,

OEIS [8] A numbers:

Recurrences.

<u>A001608</u>, <u>A002208</u>, <u>A002209</u>, <u>A007318</u>, <u>A048993</u>, <u>A048994</u>, <u>A060054</u>, <u>A104578</u>, <u>A135278</u>, <u>A227830</u>, <u>A282629</u>, <u>A028421</u>, <u>A286718</u>, <u>A286718</u>, <u>A319201</u>, <u>A319204</u>, <u>A321201</u>, <u>A321203</u>, <u>A321329</u>, <u>A321330</u>, <u>A321331</u>.