On a Conformal Mapping of Regular Hexagons and the Spiral of its Centers

Wolfdieter Lang ${ }^{1}$

Abstract

A sequence of regular hexagons used in a geometrical proof of the incommensurability of the shorter diagonal and the side of a hexagon is obtained by iteration of a conformal mapping. The centers form a discrete spiral and are interpolated by two continuous spirals, one with discontinuous curvature the other one a logarithmic spiral.

1 Introduction

A geometrical proof by contradiction of the incommensurability of the shorter diagonal of a regular hexagon and its side can be given by considering an infinite process of ever smaller hexagons. This is explained in Havil's book [2] on irrationals. It shows the irrationality of $\sqrt{3}$, the length ratio between the a shorter diagonal and the side of a regular hexagon. We use this geometrical construction of a sequence of translated, rotated and down-scaled hexagons (always regular ones) $\left\{H_{k}\right\}_{k=0}^{\infty}$ inscribed in circles $\left\{C_{k}\right\}_{k=0}^{\infty}$ of radius $\sigma^{k} r_{0}$, with $\sigma=-1+\sqrt{3}$ and centers $\left\{O_{k}\right\}_{k=0}^{\infty}$. These centers build a discrete spiral. The interpolation of the centers by a continuous curve is immediately given by patching together circular arcs of radius σ^{k} with one of the H_{k} vertices as centers. The curvature of this spiral is therefore discontinuous. Due to a conformal mapping of the loxodromic type whose iteration produces the sequence of hexagons an interpolating logarithmic spiral ensues with the finite fixed point S as its center. These two spirals are analogous to the ones in a regular pentagon with a sequence of golden triangles (or rectangles) shown, e.g., in the book of Livio [4], as figures 40 and 41 on p. 119. For these triangles the conformal mapping has been given in [3]. The completion of the hexagon sequence and the spirals using negative k values is also considered.

2 Hexagon Descent

For the following geometrical construction see Figure 1 with $k=0$. One starts with a circle C_{0} with center O_{0} and radius r_{0} (this will be taken in the sequel as length unit. Hence, lengths will always be lengths ratios w.r.t. r_{0}), and inscribes a regular hexagon (the standard construction with a pair of compasses). The vertices of the hexagon (only regular hexagons will be considered) are denoted by $V_{k}(j)$, for $j=0,1, \ldots, 5$, taken in the positive (anti-clockwise) sense. The choice of $V_{0}(0)$ defines the non-negative x_{0} axis as prolongation of $\overline{O_{0}, V_{0}(0)}$. These Cartesian coordinates are named (x_{0}, y_{0}) (or in the complex plane $\left.z=x_{0}+y_{0} i\right)$.
The next (smaller) hexagon H_{1} is inscribed in a circle C_{1} with center O_{1} and radius $r_{1}=\sigma:=-1+\sqrt{3}$. This center is obtained by drawing the smaller diagonal in H_{0}, viz, $D_{0}=\overline{V_{0}(0), V_{0}(2)}$, which has length $\sqrt{3}$, intersecting it with a circle of radius 1 around $V_{0}(2)$. Then on the circle $C_{1}\left(O_{1}, r_{1}\right)$, with radius

[^0]$r_{1}=\overline{O_{1}, V_{0}(0)}=\sigma=-1+\underline{\sqrt{3}}$, the vertex $V_{1}(3)$ of H_{1} is the intersection point with the x_{0} axis, i.e., the prolongation of $\overline{O_{0} V_{0}(0)}$ or $\overline{V_{0}(3) V_{0}(0)}$. From this vertex $V_{1}(3)$ one finds the vertex $V_{1}(0)$ as antipode on C_{1}. $V_{1}(5)$ coincides with $V_{0}(0)$.
In the second step the new center O_{2} of H_{2} is constructed in the same way by drawing the smaller diagonal $D_{1}=\overline{V_{1}(0) V_{1}(2)}\left(V_{1}(2)\right.$ happens to lie on the diagonal D_{0}, and D_{1} is parallel to the x_{0} axis). Then the circle around $V_{1}(2)$ with radius r_{1} intersects D_{1} at O_{2}. The vertex $V_{2}(3)$ on $C_{2}\left(O_{2}, r_{2}\right)$, with $\underline{r_{2}=\overline{O_{2}}, V_{1}(0)}=\sigma r_{1}=\sigma^{2}$), is the point of intersection of C_{2} with the x_{1} axis (prolongation of $\overline{\left.O_{1}, V_{1}(0)\right)}$. The antipode of $V_{2}(3)$ on C_{2} is $V_{2}(0)$, etc.
This construction implies the following data (besides some obvious ones for a hexagon).

Lemma 1

1) $\left|V_{0}(2), V_{0}(0)\right|=\sqrt{3},\left|O_{1}, V_{0}(0)\right|=\sigma:=-1+\sqrt{3} .\left|V_{1}(3), O_{0}\right|=\frac{\sigma^{2}}{2}=2-\sqrt{3}$.
2) The two circles C_{0} and C_{1} intersect at $(1,0)$ and $S=(0,1)$.

Proof: (In Cartesian coordinates $\left(x_{0}, y_{0}\right)$)

1) $V_{0}(2)=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, hence $\angle\left(V_{0}(2), V_{0}(1), O_{0}\right)=\frac{\pi}{6}$. Therefore, $O_{1}=\left(\frac{\sigma}{2}, \frac{\sigma}{2}\right)$, and $\angle\left(V_{0}(0), O_{0}, O_{1}\right)=\frac{\pi}{4} . \angle\left(V_{0}(0), V_{1}(3), O_{1}\right)=\frac{\pi}{6}$. From $\triangle\left(V_{1}(3), O_{1}, V_{0}(0)\right)$ one has $\left|V_{1}(3), V_{0}(0)\right|=$ $2 \cdot\left(\frac{\sigma}{2} \sqrt{3}\right)$. On the other hand, the y_{0} component of $V_{1}(0)$ is $\sin \left(\frac{\pi}{6}\right) 2 \sigma=\sigma$, hence $V_{0}(0)=V_{1}(5)$, and $\overline{V_{1}(0), V_{0}(0)}$ is parallel to the y_{0}-axis. Therefore $\overline{V_{1}(0), V_{1}(2)}$ is parallel to the x_{0}-axis, and $V_{1}(2)$ with y_{0}-component σ lies on the diagonal $D_{0} .\left|V_{1}(3), O_{0}\right|=\sigma \frac{\sqrt{3}}{2}-\frac{\sigma}{2}=\frac{\sigma^{2}}{2}=2-\sqrt{3}$.
2) With $C_{0}: x_{0}^{2}+y_{0}^{2}=1$ and $C_{1}:\left(x_{0}-\frac{\sigma}{2}\right)^{2}+\left(y_{0}-\frac{\sigma}{2}\right)^{2}=\sigma^{2}$ one finds the intersections $(1,0)$ and $S=(0,1)$.
Thus the new hexagon H_{1} is obtained from the old one, H_{0}, by a translation with $\vec{v}_{0}:=\overrightarrow{O_{0}, O_{1}}=$ $\sigma(1,1)^{\top}$ (a column vector), followed by a rotation about the axis perpendicular to the plane (the z-axis) through O_{1} by the angle $\angle\left(V_{1}(0), V_{1}(2), V_{1}(5)\right)=\frac{\pi}{6}$ and scaling down by a factor σ. This process is iterated to find H_{k+1} from H_{k}, for $k=0,1, \ldots$ (see Figure 1).
Next, the vectors $\vec{v}_{k}=\overrightarrow{O_{k-1}, O_{k}}$ are given in polar coordinates.
Lemma 2: Vectors $\vec{v}_{k}, k=1,2, \ldots$

$$
\begin{align*}
& \vec{v}_{k} \doteq v_{k}\binom{\cos \alpha_{k}}{\sin \alpha_{k}}, \text { with } v_{k}=\sigma^{k} \frac{\sqrt{2}}{2}, \text { and } \alpha_{\mathrm{k}}=(2 \mathrm{k}+1) \frac{\pi}{12}, \text { for } \mathrm{k} \in \mathbb{N}, \tag{1}\\
& v_{k}=\left(a_{k}+b_{k} \sqrt{3}\right) \frac{\sqrt{2}}{2}, \text { where } a_{k}=(-1)^{k} \underline{A 026150}(k), \text { and } b_{k}=(-1)^{k+1} \underline{A 002605}(k) .
\end{align*}
$$

For the first a_{k} and b_{k} entries see Table 6 , column r_{k}. For the components of the first twelve vectors \vec{v}_{k} see Table 1.

Proof:

i) The polar angle α is obtained recursively from $\alpha_{k}=\alpha_{k-1}+\frac{\pi}{6}$, for $k=2,3, \ldots$, with input $\alpha_{1}=\frac{\pi}{4}$ which follows from the rotation by an angle of $\frac{\pi}{6}$ to obtain H_{k} from H_{k-1}.
ii) The length v_{k} is obtained recursively from $v_{k}=v_{k-1} \sigma$ for $k=2,3, \ldots$ with input $v_{1}=\sigma \sqrt{2}$. One may take formally $v_{0}=\frac{\sqrt{2}}{2}$ and then $v_{k}=\sigma^{k} v_{0}$, for $k=(0), 1,2, \ldots$. For $\left\{a_{k}\right\}_{k=0}^{\infty}$ and $\left\{b_{k}\right\}_{k=0}^{\infty}$ one obtains the mixed recurrence $a_{k}=-a_{k-1}+3 b_{k-1}$ and $b_{k}=a_{k-1}-b_{k-1}$, for $k=0,1, \ldots$, and inputs $a_{0}=1$ and $b_{0}=0$. This decouples, inserting $b_{k}+b_{k-1}=a_{k-1}$ into $a_{k}+a_{k-1}$, to the three term recurrences $b_{k}=2\left(-b_{k-1}+b_{k-2}\right)$ with inputs $b_{0}=0$ and $b_{1}=1$, and $a_{k}=2\left(-a_{k-1}+a_{k-2}\right)$ with inputs
$a_{0}=1$ and $a_{1}=-1$. The Binet formulae are, with $\tau:=\frac{2}{\sigma}=1+\sqrt{3}=:-\bar{\sigma}, a_{k}=\frac{1}{2}\left(\sigma^{k}+(-\tau)^{k}\right)$ and $b_{k}=\frac{1}{2 \sqrt{3}}\left(\sigma^{k}-(-\tau)^{k}\right)$. The o.g.f.s (ordinary generating functions) are $G a(x)=\frac{1+x}{1+2 x-2 x^{2}}$ and $G b(x)=\frac{x}{1+2 x-2 x^{2}}$. This explains the given result involving $\underline{A 026150}$ and $\underline{\text { A002605 }}$.

In Cartesian coordinates one can write the recurrence as

$$
\vec{v}_{k}=\sigma \mathbf{R} \vec{v}_{k-1}, \quad k=2,3, \ldots \text { with } \vec{v}_{1} \doteq \frac{\sigma}{2}\binom{1}{1} \text { and } \mathbf{R} \doteq \frac{1}{2}\left(\begin{array}{cc}
\sqrt{3} & -1 \tag{2}\\
1 & \sqrt{3}
\end{array}\right) .
$$

\mathbf{R} is the rotation matrix for angle $\frac{\pi}{6}$. This leads to

$$
\begin{equation*}
\vec{v}_{k+1}=(\sigma \mathbf{R})^{k} \vec{v}_{1}, \text { for } k=(0), 1,2, \ldots \tag{3}
\end{equation*}
$$

The powers of σ have been given above as $\sigma^{k}=a_{k}+b_{k} \sqrt{3}$.
The powers of R are found as an application of the Cayley - Hamilton theorem, e.g., [8],[7]:

$$
\begin{equation*}
\mathbf{R}^{k}=S_{k-1}(\sqrt{3}) \mathbf{R}-S_{k-2}(\sqrt{3}) \mathbf{1}_{2}, \text { for } k=1,2, \ldots \tag{4}
\end{equation*}
$$

Where $S_{n}(x)$ is the Chebyshev polynomial with coefficients given in A049310 with $S_{-1}(x)=$ 0 and $S_{-2}(x)=-1$. Here $S_{2 l}(\sqrt{3})=\underline{A 057079}(l)$ and $S_{2 l+1}(\sqrt{3})=\underline{A 019892}(l) \sqrt{3}$, for $k=0,1, \ldots$ A057079 and A019892 are period length 6 sequences, repeat $(1,2,1,-1,-2,-1)$ and repeat $(1,1,0,-1,-1,0)$, respectively. I.e., $S_{n}(\sqrt{3})=s_{n}+t_{n} \sqrt{3}$, with $\left\{s_{n}\right\}_{n=0}^{\infty}=$ repeat $(1,0,2,0,1,0,-1,0,-2,0,-1,0)$ and $\left\{t_{n}\right\}_{n=0}^{\infty}=\operatorname{repeat}(0,1,0,1,0,0,0,-1,0,-1,0,0)$.

Corollary 1: \vec{v}_{k} Periodicity modulo 12 up to scaling

$$
\begin{equation*}
\vec{v}_{k+12 l}=\sigma^{12 l} \vec{v}_{k}, \text { for } k \in \mathbb{N}, l \in \mathbb{N}_{0} . \tag{5}
\end{equation*}
$$

This follows from the periodicity of the angle α_{k} in eq. (1).
The calculation of the $\vec{v}_{2 l}$ and $\vec{v}_{2 l+1}$ components w.r.t. the $\left(x_{0}, y_{0}\right)$ coordinate system leads to
Proposition 1: Components of $\vec{v}_{k}, k=1,2, \ldots$

$$
\begin{align*}
& \begin{aligned}
& \vec{v}_{2 l} \doteq \frac{1}{4}\binom{v e 1(l)+w e 1(l) \sqrt{3}}{v e 2(l)+w e 2(l) \sqrt{3}}, l \geq 1, \quad \vec{v}_{2 l+1} \doteq \frac{1}{4}\binom{v o 1(l)+w o 1(l) \sqrt{3}}{v o 2(l)+w o 2(l) \sqrt{3}}, l \geq 0, \\
& \text { with } \quad v e 1(l)=-a_{2 l} A(l-1)+3 b_{2 l}(A(l-1)-2 B(l-2)), \\
& w e 1(l)=+a_{2 l}(A(l-1)-2 B(l-2))-b_{2 l} A(l-1), \\
& v e 2(l)=+a_{2 l} A(l-1)+3 b_{2 l}(A(l-1)-2 B(l-2)), \\
& w e 2(l)=+a_{2 l}(A(l-1)-2 B(l-2))+b_{2 l} A(l-1), \\
& \text { and } \quad v o 1(l)=a_{2 l+1}(3 B(l-1)-2 A(l-1))-3 b_{2 l+1} B(l-1), \\
& w o 1(l)=-a_{2 l+1} B(l-1)+b_{2 l+1}(3 B(l-1)-2 A(l-1)), \\
& v o 2(l)=+a_{2 l+1}(3 B(l-1)-2 A(l-1))+3 b_{2 l+1} B(l-1), \\
& w o 2(l)=+a_{2 l+1} B(l-1)+b_{2 l+1}(3 B(l-1)-2 A(l-1)), \\
& \text { where } A(l)=S_{2 l}(\sqrt{3}), B(l)=S_{2(l-1)}(\sqrt{3}) / \sqrt{3}, \\
& \text { and } \quad a_{k} \text { and } b_{k} \text { aregiven in Lemma2. }
\end{aligned} . \tag{6}
\end{align*}
$$

See Table 1 for the coordinates of \vec{v}_{k} for $k=1,2, \ldots, 12$.

The center O_{k} of hexagon H_{k}, the endpoint of the vector $\vec{O}_{k}:=\overrightarrow{O_{0}, O_{k}}$, is obtained from (undefined sums are set to 0)

$$
\begin{align*}
& \vec{O}_{k}=\sum_{j=1}^{k} \vec{v}_{j}, \quad k=1,2, \ldots \text { and } \vec{O}_{0}=\overrightarrow{0}, \tag{15}\\
& \vec{O}_{k}=\left(\mathbf{1}_{2}+\sum_{j=1}^{k-1}(\sigma \mathbf{R})^{j}\right) \vec{v}_{1} . \tag{16}
\end{align*}
$$

In the coordinate system $\left(x_{0}, y_{0}\right)$ the components of center O_{k} follow from Proposition 1.
Corollary 2: Components of $O_{k}, k=1,2, \ldots$

$$
\begin{align*}
& \left(O_{k}\right)_{x_{0}}=\frac{1}{4}\left(\sum_{j=1}^{\left\lfloor\frac{k}{2}\right\rfloor}(v e 1(j)+w e 1(j) \sqrt{3})+\sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}(v o 1(j)+w o 1(j) \sqrt{3})\right) \\
& \left(O_{k}\right)_{y_{0}}=\frac{1}{4}\left(\sum_{j=1}^{\left\lfloor\frac{k}{2}\right\rfloor}(v e 2(j)+w e 2(j) \sqrt{3})+\sum_{j=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}(v o 2(j)+w o 2(j) \sqrt{3})\right) \tag{17}
\end{align*}
$$

See Table 1 for the components of O_{k} for $k=1,2, \ldots, 12$. It seems that the centers $O_{6 l}$, for $l=0,1, \ldots$ lie on the y_{0} axis. This will be proved in the next section in Proposition 4.
The relation between $\vec{O}_{k+12 l}$ and Q_{k} will also be considered in the next section in Proposition 6, part 7), in the complex plane. It is a periodicity modulo 12 up to a scaling and a translation.

The vertices $V_{k}(j)$, for $j=0,1, \ldots, 5$, of the hexagon H_{k} follow from $\vec{V}_{k}(j):=\overrightarrow{O_{0}, V_{k}(j)}$.
Proposition 2: Vertices of hexagons H_{k}

$$
\begin{equation*}
\vec{V}_{k}(j)=\vec{O}_{k}+\sigma^{k} \mathbf{R}^{k+2 j}\binom{1}{0}, \text { for } k=0,1, \ldots, \quad \text { and } j=0,1, \ldots, 5 \tag{18}
\end{equation*}
$$

Proof:

For the hexagon H_{k} the vector $\overrightarrow{O_{k}, V_{k}(0)}$ is obtained from the unit vector in x_{0} direction of the original coordinate system $\left(x_{0}, y_{0}\right)$ for the first hexagon H_{0} by k-fold rotation with $\mathbf{R}=\mathbf{R}\left(\frac{\pi}{6}\right)$ and down-scaling by σ as

$$
\begin{equation*}
\overrightarrow{O_{k}, V_{k}(0)}=(\sigma \mathbf{R})^{k}\binom{1}{0} \tag{19}
\end{equation*}
$$

Then the vectors for the other vertices are obtained by repeated rotation of 60°, i.e., by application of \mathbf{R}^{2} leading to the assertion.
For the $\left(x_{0}, y_{0}\right)$ components of $\vec{V}_{k}(0)$, for $0,1, \ldots, 12$, see Table 2, and for the other vertices, for $j=$ $1,2, \ldots, 5$, see Tables 3,4 and 5 .

Lemma 3: Triangles T_{k}

The triangle $T_{k}=\triangle\left(O_{k}, V_{k}(2), O_{k+1}\right)$, for $k=0,1, \ldots$, is isosceles with basis $v_{k+1}=\frac{1}{\sqrt{2}} \sigma^{k+1}$ and two sides of length $r_{k}=\sigma^{k}$. The angles are $\angle\left(O_{k+1}, V_{k}(2), O_{k}\right)=\frac{\pi}{6} \hat{=} 30^{\circ}$ and twice $\frac{5 \pi}{12} \hat{=} 75^{\circ}$.
Proof: This is clear from the construction and the values for v_{k} given above in Lemma 2 and r_{k}. See Figure 1.

The polar coordinates of O_{k}, the center of hexagon H_{k} are given as follows. Note that $\varphi \in[0,2 \pi)$. The number of revolutions, using also $\varphi \geq 2 \pi$ (sheets in the complex plane), will be considered in the next section.

Corollary 3: Polar coordinates of O_{k}

In the complex plane $O_{k} \hat{=} z_{k}=\rho_{k} \exp \left(i \varphi_{k}\right)$ with $\rho_{k}=\left|\overrightarrow{O_{0}, O_{k}}\right|$, one has

$$
\begin{align*}
\rho_{k} & =\sqrt{\left(\left(O_{k}\right)_{x_{0}}\right)^{2}+\left(\left(O_{k}\right)_{y_{0}}\right)^{2}}, \text { with eq.(17) } \tag{20}\\
\varphi_{k} & =\hat{\varphi}_{k} \text { in quadrant I, }=\hat{\varphi}_{k}+\pi \text { in quadrants II and III, }=\hat{\varphi}_{k}+2 \pi \text { in quadrant IV, with } \\
\hat{\varphi}_{k} & =\arctan \left(\frac{\left(O_{k}\right)_{y_{0}}}{\left(O_{k}\right)_{x_{0}}}\right) \tag{21}
\end{align*}
$$

ρ_{k}^{2} is integer in the real quadratic number field $\mathbb{Q}(\sqrt{3})$. For the values for $k=0,1, \ldots, 12$, see Table 2. The corresponding angles are $\left(\varphi_{k} 180 / \pi\right)^{\circ}$. The values for tan $\hat{\varphi}_{k}$ are elements of $\mathbb{Q}(\sqrt{3})$. For their components see also Table 2 , for $k=1,2, \ldots, 12$ (for $k=0$, with $z_{0}=0$, the value of $\hat{\varphi}_{0}$ is arbitrary; in Table 2 we have set it to 0).

3 Conformal mapping and the Hexagon Spiral

The discrete spiral formed by the hexagon centers O_{0} and O_{k} given in eq. (17) for $k=0,1, \ldots$, are shown as dots in Figure 2 for $k=0,1, \ldots, 11$. In the complex plane $\overline{\mathbb{C}}=\mathbb{C} \cup \infty$ these centers will be called $z_{k}=\left(O_{k}\right)_{x_{0}}+\left(O_{k}\right)_{y_{0}} i$. The construction of these hexagon described in sect. 1 is obtained by repeated application of a conformal Möbius transformation. It is determined by mapping the triangle T_{0} of H_{0} with vertices $z(1)=V_{0}(2)=\frac{1}{2}(-1+\sqrt{3} i), z(2)=z_{0}=0+0 i$ and $z(3)=z_{1}=\frac{1}{2}(1+1 i)$ to the translated, rotated and scaled triangle T_{1} of H_{1} with vertices $w(1)=V_{1}(2)=(-2+\sqrt{3})+(-1+\sqrt{3}) i$, $w(2)=z_{1}=\frac{1}{2}(-1+\sqrt{3}+(-1+\sqrt{3}) i)$ and $w(3)=z_{2}=(-3+2 \sqrt{3})+(-1+\sqrt{3}) i$. See Figure 1 for these two triangles, setting $k=0$. In general triangle T_{k} is mapped to T_{k+1} by this conformal transformation, especially $w\left(z_{k}\right)=z_{k+1}$, for $k=0,1, \ldots$. The unique Möbius transformation which maps the vertices of T_{0} to those of T_{1} is given by solving the double quotient equation for $w=w(z)$ (see. e.g., [6], [9])
$D Q(w(1), w(2), w(3), w)=D Q(z(1), z(2), z(3), z), \quad$ with $D Q(z 1, z 2, z 3, z 4):=\frac{z 4-z 3}{z 4-z 1} / \frac{z 2-z 3}{z 2-z 1}$.
The solution is a Möbius transformation of the loxodromic type, having besides one fixed point at ∞ another finite one S with $(w-S)=a(z-S)$, where a is not real non-negative, and $|a| \neq 1$.

$$
\begin{align*}
w(z) & =\frac{A}{D} z+\frac{B}{D}, \text { with } \\
A & =2((-2+\sqrt{3})+(-7+4 \sqrt{3}) i) \\
B & =(-9+5 \sqrt{3})+(5-3 \sqrt{3}) i \\
D & =(1-\sqrt{3})+(-5+3 \sqrt{3}) i \tag{23}
\end{align*}
$$

The determinant of this transformation is $A D=8(-19+11 \sqrt{3}) . A, B$ and D are integers in $\mathbb{Q}(\sqrt{3})$. This is rewritten in the following Proposition.

Proposition 3: Loxodromic map w

1) The unique conformal Möbius transformation w which maps the corners of triangle T_{0} to those of T_{1} (keeping the orientation), and hence $T_{k}=\triangle\left(V_{k}(2), O_{k}, O_{k+1}\right)$ to T_{k+1}, is given by the loxodromic map

$$
\begin{align*}
w(z) & =a z+b, \text { with } \\
a & =\frac{1}{2}((3-\sqrt{3})+(-1+\sqrt{3}) i) \\
b & =\frac{1}{2}(-1+\sqrt{3})(1+i)=(1-a) i \tag{24}
\end{align*}
$$

2) $a=\sigma e^{i \frac{\pi}{6}}$, and $|a|=\sigma=-1+\sqrt{3} \neq 1$. The finite fixed point of this map is $S=i$. S is the common intersection point of all circles C_{k}.

Proof:

1) This is clear from the construction and the previous form of w from eq. (23), and the computation has been checked with the help of Maple [5].
2) The values of a and $|a|$ show that this Möbius transformation is loxodromic with finite fixed point $S=i$. S has to lie on each circle C_{k}, for $k=0,1, \ldots$, because w maps C_{k} to C_{k+1}.

Corollary 4: Inverse map $w^{[-1]}$

The inverse of map $w^{[-1]}$ of w is given by

$$
\begin{align*}
w^{[-1]}(z) & =a^{-1} z+\left(1-a^{-1}\right) i \\
& =\frac{1}{4}[((3+\sqrt{3})-(1+\sqrt{3}) i) z+(-(1+\sqrt{3})+(1-\sqrt{3}) i)], \text { for } z \in \overline{\mathbb{C}} . \tag{25}
\end{align*}
$$

Check: $w^{[-1]}(w(z)) \equiv z$.
With the help of the conformal map w it is now easy to prove that points $z_{6 j}$ (corresponding to the centers $O_{6 j}$) lie on the imaginary axis (the y_{0}-axis).
Proposition 4: Centers $z_{6 j}$ lie on the imaginary axis

$$
\Re\left(z_{6 j}\right)=0, \text { for } j \in \mathbb{N}_{0}
$$

Proof:

Compute $w^{6}(z)$ for z on the imaginary axis, $z=y i$, with real y : $w^{6}(y i)=(y+(209-120 \sqrt{3})(1-y)) i$ $=\left(y+\left(O_{6}\right)_{y_{0}}(1-y)\right) i$. See the last column of Table 1 for $\left(O_{6}\right)_{y_{0}}$. Therefore, points on the non-negative imaginary axis are mapped by w^{6} again on this axis. Because $z_{0}=0$ lies on the imaginary axis also $z_{6 j}$, for $j=1,2, \ldots$, have to lie on the imaginary axis.

Corollary 5: Number of centers for each revolution of the spiral

The number of centers 0_{k} for each revolution is 12 .
See Figure 4 for the first revolution, except for 0_{12} on the imaginary axis where the second revolution starts.

The discrete hexagon spiral can be interpolated between O_{k} and O_{k+1} by circular arcs A_{k} of the circles $\hat{C}_{k}\left(V_{k}(2), r_{k}\right)$. See Figure 4. These arcs A_{k} belong to a sector of \hat{C}_{k} of angle $\frac{5 \pi}{12}$ (see Lemma 3). The precise form is given by

Proposition 5: Interpolating circular $\operatorname{arcs} A_{k}$

The circular arc with center $V_{k}(2)$ and radius $r_{k}=\sigma^{k}$ which interpolates between the centers O_{k} and O_{k+1} of the hexagon H_{k} is given by

$$
\begin{equation*}
A_{k}=\operatorname{arc}\left(V_{k}(2), r_{k}, \frac{(k-2) \pi}{6}, \frac{(k-1) \pi}{6}\right) \tag{26}
\end{equation*}
$$

Proof:

From Lemma 3 the range of the angle φ is $\frac{\pi}{6}$. The angles are counted in the positive sense with respect to the horizontal line, defined by the x_{0}-axis. It is therefore sufficient to know the angle for one of the lines $\overline{V_{k}(2), O_{k+1}}$ which corresponds to the larger of the angles for arc A_{k}, For $k=1$ this angle vanishes because the y_{0} components of $V_{1}(2)$ and O_{2} coincide, they are σr_{0}. Hence the angle for arc A_{2} starts with $0\left(V_{2}(2)\right.$ is on the line segment $\left.\overline{V_{1}(2), O_{2}}\right)$ and ends with $\frac{\pi}{6}$. This proves the given range for each A_{k}.
This interpolation by circular arcs is continuous but has discontinuous curvature with increases at each center O_{k} by a factor of $1 / \sigma=\frac{\tau}{2}=\frac{1}{2}(1+\sqrt{3}) \approx 1.366025403$.
An interpolation with continuous curvature is given by the equal angle spiral (the logarithmic) spiral (Jacob I Bernoulli: spira mirabilis), defined in the complex plane by $L S(\phi)=r(\phi) \exp (i \phi)$, with $r(\phi)=r(0) \exp (-\kappa \phi)$ where the constant κ defines the constant angle α between the radial ray and the tangent (taken in the direction of increasing angle ϕ) at any point of the spiral by $\alpha=\operatorname{arccot}(-k)$. Here the center of the logarithmic spiral is at the finite fixed point S and we choose a coordinate system (X, Y) with the positive X direction along the vertical line (the y_{0}-axis in the negative sense) and the positive Y axis in the horizontal direction to the right, parallel to the positive x_{0} axis. I.e., $X=-y_{0}+1$ and $Y=x_{0}$. In this system $0_{0}=(1,0)$ and $r(0)=r_{0}=1$. The angle ϕ_{1} for $0_{1}=\left(\frac{2-\sigma}{2}, \frac{\sigma}{2}\right)$ (in the $\left(x_{0}, y_{0}\right)$ system $)$ becomes in the (X, Y) system $\frac{\pi}{6}$ because $\tan \left(\phi_{1}\right)=\frac{\sigma}{2-\sigma}=\frac{\sqrt{3}}{3} \cdot r\left(\frac{\pi}{6}\right)=r_{1}=\sigma$. Therefore the constant of the logarithmic spiral is $\kappa=-\frac{6}{\pi} \log (\sigma) \approx-0.5956953531$. This corresponds to $\operatorname{arccot}(-\kappa) \approx 1.033548020$, corresponding to about 59.216°. To summarize:

Proposition 6: Logarithmic Spiral for non-negative k

1) In the coordinate system (X, Y) of the logarithmic spiral with origin S and $X=-y_{0}+1$, $Y=x_{0}$ the spokes $S p_{k}=\overline{S, O_{k}}$ have lengths $r_{k}=\sigma^{k}$. The angles ϕ_{k} are obtained by $\sin \left(\phi_{k}\right)=\left(O_{k}\right)_{x_{0}} \sigma^{-k}$ where $\sigma^{-k}=\left(\frac{\tau}{2}\right)^{k}=a_{-k}+b_{-k} \sqrt{3}$, where $\tau=1+\sqrt{3}=-\bar{\sigma}$ and $a_{-k}=\underline{\operatorname{A} 002531}(k) / 2^{\left\lfloor\frac{k+1}{2}\right\rfloor}, b_{-k}=\underline{\operatorname{A} 002530}(k) / 2^{\left\lfloor\frac{k+1}{2}\right\rfloor}$ for $k=0,1, \ldots$. I.e., $\left\{\sin \left(\phi_{k}\right)\right\}_{k=0}^{\infty}=$ repeat $\left(0, \frac{1}{2}, \frac{1}{2} \sqrt{3}, 1, \frac{1}{2} \sqrt{3}, \frac{1}{2}, 0,-\frac{1}{2},-\frac{1}{2} \sqrt{3},-1,-\frac{1}{2} \sqrt{3},-\frac{1}{2}\right)$. The first period applies to the first revolution of the spiral (sheet S_{1} in the complex plane). The corresponding angles are for the N -th revolution (sheet S_{N} in the complex plane) $\phi_{k}=2 \pi(N-1)+\frac{\pi}{6} k(\bmod 12)$, I.e., an addition of $\frac{\pi}{6}$ or 30° from spoke $S p_{k}$ to $S p_{k+1}$ for each $k=0,1, \ldots$. The periodicity modulo 12 is proved in part $\left.\mathbf{6}\right)$.
2) In the coordinate system (X, Y) with origin S the hexagon centers are $L S\left(\phi_{k}\right)=Z_{k}=\sigma^{k} \exp \left(i \phi_{k}\right)=$ $\left(a_{k}+b_{k} \sqrt{3}\right) \exp \left(i \frac{\pi}{6} k\right)$, for $k=0,1, \ldots$. This becomes with the help of the de Moivre formula, expressed in terms of Chebyshev's S polynomials evaluated at $\sqrt{3}$:

$$
\begin{gather*}
Z_{k}=\frac{1}{2}\left(\left(3 b_{k} S_{k-1}(\sqrt{3})-2 a_{k} S_{k-2}(\sqrt{3})\right)+\left(a_{k} S_{k-1}(\sqrt{3})-2 b_{k} S_{k-2}(\sqrt{3})\right) \sqrt{3}+\right. \\
\left.\left(a_{k}+b_{k} \sqrt{3}\right) S_{k-1}(\sqrt{3}) i\right)=\left(O_{k}\right)_{X}+\left(O_{k}\right)_{Y} i \tag{27}
\end{gather*}
$$

where a_{k} and b_{k} have been given in Lemma 2, and Chebyshev's $S_{n}(\sqrt{3})$ polynomials entered in connection with eq. (4). See Table 6 for the Cartesian coordinates $\left(\left(O_{k}\right)_{X},\left(O_{k}\right)_{Y}\right)$ for $k=0,1, \ldots, 12$.
3) The curvature $K(\phi)$ of the logarithmic spiral $r(\phi)=\exp (-\kappa \phi)$ is itself a logarithmic spiral

$$
\begin{equation*}
K(\phi)=\frac{1}{\sqrt{1+\kappa^{2}}} \exp (+\kappa \phi) \text { with } \kappa=-\frac{6}{\pi} \log (\sigma) . \tag{28}
\end{equation*}
$$

$\kappa \approx-0.5956953531$ and $K(0)=\frac{1}{\sqrt{1+\kappa^{2}}} \approx 0.8591201770$.
4) The conformal map $W(Z)$ and its inverse $W^{[-1]}$ in the S-system are for $Z \in \overline{\mathbb{C}}$ given by

$$
\begin{align*}
W(Z) & =\frac{1}{2}((3-\sqrt{3})+(-1+\sqrt{3}) i) Z=a Z \tag{29}\\
W^{[-1]}(Z) & =\frac{1}{4}((3+\sqrt{3})-(1+\sqrt{3}) i) Z=a^{-1} Z . \tag{30}
\end{align*}
$$

5) The relation between the conformal maps w and W is

$$
\begin{align*}
& W(Z)=i w(z(Z))+1, \text { or } w(z)=i(1-W(Z(z)), \tag{31}\\
& \text { with } z(Z, \bar{Z})=z(Z)=i(1-Z), \text { or } Z(z)=1+i z \tag{32}
\end{align*}
$$

6) Periodicity modulo 12 up to scaling for Z_{k} :

$$
\begin{equation*}
Z_{k+12 l}=\sigma^{12 l} Z_{k}, \text { for } k \in \mathbb{N}_{0}, l \in \mathbb{N}_{0} \tag{33}
\end{equation*}
$$

7) Periodicity modulo 12 up to scaling and translation for z_{k} :

$$
\begin{equation*}
z_{k+12 l}=\sigma^{12 l} z_{k}+i\left(1-\sigma^{12 l}\right), \text { for } k \in \mathbb{N}_{0}, l \in \mathbb{N}_{0} \tag{34}
\end{equation*}
$$

Proof:

1) The length ratio of the spokes is clear: S is the intersection of all circles C_{k}, for $k=0,1, \ldots$, and O_{k} is the center of C_{k}. The periodicity modulo 12 of the angles ϕ_{k} follows conjecturally from the $\sin \left(\phi_{k}\right)$ formula if the x_{0} component of O_{k} from eq. (17) is inserted. Later, under part 6), this is proved. The values for the first revolution then show that in general $\phi_{k+1}=\phi_{k}+\frac{\pi}{6}$. One has to take into account the quadrants when interpreting the angles from the $\sin \left(\phi_{k}\right)$ result.
2) This uses a standard reformulation of the trigonometric quantities obtained from the de Moivre formula in terms of Chebyshev's polynomials (they are the circular harmonics). The powers of σ have already been treated in Lemma 2.
3) The formula for the curvature K of a curve in two-dimensional polar coordinates $r=r(\phi)$ is $K(\phi)=$ $\frac{r^{2}+2 r^{\prime 2}-r r^{\prime \prime}}{\left(r^{2}+r^{\prime 2}\right)^{3 / 2}}$, e.g., [1]. As explained in the preamble to this Proposition the logarithmic spiral is $r(\phi)=\exp (-\kappa \phi)$, and with $r_{1}=r\left(\frac{\pi}{6}\right)=\sigma$ one determines the constant $-\kappa$. The curvature K becomes itself a logarithmic spiral with $K(0)=\frac{1}{\sqrt{1+\kappa^{2}}}$ and the constant $+\kappa$.
4) Like for the conformal map w, the unique Möbius transformation W which maps the points ($S=0, Z_{0}, Z_{1}$) to (S, Z_{1}, Z_{2}) is obtained by solving the double quotient equation $D Q\left(0, Z_{0}, Z_{1}, Z\right)=$ $D Q\left(0, Z_{1}, Z_{2}, W\right)$ for $W=W(Z)$. The real and imaginary parts of Z_{k}, for $k=0,1, \ldots, 12$ are shown in Table 6 as $\left(O_{k}\right)_{X}$ and $\left(O_{k}\right)_{Y}$. In general $W\left(Z_{k}\right)=Z_{k+1}$, for $k=0,1, \ldots$. The same a as in eq. (24) appears. The inverse map $W^{[-1]}$ satisfies $W^{[-1]}(W(Z))=Z$, identically. Note that, in contrast to w, the map W, hence $W^{[-1]}$, is linear.
5) The coordinate transformation $X=1-y_{0}$ and $Y=x_{0}$ leads for $z=x_{0}+y_{0} i$ and $Z=X+Y i$ to $z(Z, \bar{Z})=\frac{Z-\bar{Z}}{2 i}+\left(1-\frac{Z+\bar{Z}}{2}\right) i=i(1-Z)+0 \bar{Z}=i(1-Z)=z(Z)$. With $w(z)=$ $a z+(1-a) i$ from eq. (24), one obtains $w(z(Z))=a(1-Z) i+(1-a) i=i(1-a Z)=i(1-W(Z)$. I.e., $W(Z)=i w(z(Z))+1$. Or, with $Z(z)=1+z i, W(Z(z))=i(a z+b)+(-i b+a)=i w(z)+1$, because $a-i b=1$. Therefore, $w(z)=i(1-W(Z(z))$.
6) The linearity of W means that $W^{[p]}(Z)=a^{p} Z$ for the p-fold iterated map W for $Z \in \overline{\mathbb{C}}$. Now, with $Z_{0}=1$, one has $Z_{k+12 l}=W^{[k+12 l]}(1)=W^{[12 l]}\left(W^{[k]}(1)\right)=W^{[12 l]}\left(Z_{k}\right)$ By linearity this is $a^{12 l} Z_{k}=$ $\left(\sigma^{12}\right)^{l} Z_{k}$. Here $a^{12}=\sigma^{12}$ even though $a \neq \sigma$. This follows from $Z_{12}=W^{[12]}(1)=a^{12} 1=a^{12}$, and by computation (see the last two columns of Table 6) $Z_{12}=86464-49920 \sqrt{3}+0 i=\sigma^{12}$ by the first column of this Table.
7) This periodicity modulo 12 up to scaling translates into a periodicity modulo 12 up to translation and scaling for the centers z_{k} of the circles C_{k} in the coordinate system $\left(x_{0}, y_{0}\right)$ due to the transformation given in part 5) applied to these centers, viz, $z_{k}\left(Z_{k}\right)=i\left(1-Z_{k}\right)$ for $k \in \mathbb{N}_{0}$. Therefore, $z_{k+12 l}=i(1-$ $\left.Z_{k+12 l}\right)=i\left(1-\sigma^{12 l} Z_{k}\right)$ from part 4). With $Z=Z_{k}\left(z_{k}\right)=1+z_{k} i$ this becomes $z_{k+12 l}=\sigma^{12 l} z_{k}+$ $i\left(1-\sigma^{12 l}\right)$.

4 Hexagon Ascent

It is straightforward to continue the discrete spiral and its interpolations to negative k values. In the coordinate system $\left(x_{0}, y_{0}\right)$ with origin $O_{0}=0$ the vectors $\vec{v}_{-k}=\overrightarrow{O_{-(k+1)}, O_{-k}}$ have polar coordinates following from extending eq. (1).

$$
\begin{align*}
& \vec{v}_{-k} \doteq v_{-k}\binom{\cos \alpha_{-k}}{\sin \alpha_{-k}}, \text { with } v_{-k}=\sigma^{-k} \frac{\sqrt{2}}{2}, \text { with } \alpha_{-\mathrm{k}}=(1-2 \mathrm{k}) \frac{\pi}{12} \text { for } \mathrm{k} \in \mathbb{N}_{0} \tag{35}\\
& v_{-k}=\left(a_{-k}+b_{-k} \sqrt{3}\right) \frac{\sqrt{2}}{2}, \text { where } a_{-k}=\underline{A 002531}(k) / 2^{\left\lfloor\frac{k+1}{2}\right\rfloor}, \text { and } b_{-k}=\underline{A 002530}(k) / 2^{\left\lfloor\frac{k+1}{2}\right\rfloor}
\end{align*}
$$

σ^{-k} appeared already in Proposition 5, part 1). See also the second column of Table 3 for $\left\{a_{-k}, b_{-k}\right\}$ for $k=0,1, \ldots, 12$.
This can be written as

$$
\vec{v}_{-k}=\left(\sigma \mathbf{R}^{-1}\right)^{k+1} \vec{v}_{1}, \quad \text { with } \quad \mathbf{R}^{-1} \doteq \frac{1}{2}\left(\begin{array}{cc}
\sqrt{3} & 1 \tag{36}\\
-1 & \sqrt{3}
\end{array}\right), \quad \text { for } k \in \mathbb{N}_{0}
$$

For \vec{v}_{1} and \mathbf{R} see eq. (2) . E.g., $\vec{v}_{0} \doteq \frac{1}{4}\binom{\tau}{\sigma}$.
The formula eq. (4) can be used to obtain $\mathbf{R}^{-\mathbf{k}}$ with the Chebyshev polynomials $S_{-n}(x)=-S_{n-2}(x)$, for $n \in \mathbb{N}_{0}$, with $S_{-1}(x)=0$.

$$
\begin{equation*}
\mathbf{R}^{-k}=-S_{k-1}(\sqrt{3}) \mathbf{R}+S_{k}(\sqrt{3}) \mathbf{1}_{2}, \text { for } k=0,1,2, \ldots \tag{37}
\end{equation*}
$$

The components of \vec{v}_{-k} can be computed from this. Similarly to Corollary 1 these vectors are periodic modulo 12 up to scaling:
Corollary $6=1^{\prime}: \quad \vec{v}_{-k}$ periodicity up to scaling

$$
\begin{equation*}
\vec{v}_{-(k+12 l)}=(\sigma)^{-12 l} \vec{v}_{-k}=\left(\frac{\tau}{2}\right)^{12 l} \vec{v}_{-k}, \quad \text { for } k \in \mathbb{N}_{0}, l \in \mathbb{N}_{0} \tag{38}
\end{equation*}
$$

In order to obtain components of \vec{v}_{-k} which are integers in the real quadratic number field $\mathbb{Q}(\sqrt{3})$ the largest denominator $2^{s(k)}$ with $s(k)=\underline{A 300068}(k)$ has been multiplied. This sequence $\{s(k)\}_{k \geq 0}$ is obtained from the periodic sequence $\underline{\text { A300067 }}$, repeat $(0,0,0,1,2,2$,$) .$

Lemma 4: Sequence s

The formula for the members of sequence s and its o.g.f. is

$$
\begin{align*}
& s(k)=2+\left\lfloor\frac{k(\bmod 6)}{3}\right\rfloor+\left\lfloor\frac{k(\bmod 6)}{4}\right\rfloor+3\left\lfloor\frac{k}{6}\right\rfloor, \text { for } k \in \mathbb{N}_{0} \\
& \text { O.g.f. } \quad G(x)=\frac{2+x^{3}+x^{4}-x^{6}}{\left(1-x^{6}\right)(1-x)} \tag{39}
\end{align*}
$$

Proof:

Due to the periodicity up to scaling (Corollary 6) it is sufficient to consider $s(k)$, for $k=0,1, \ldots, 11$. These values are given from the first twelve vectors \vec{v}_{-k} by the second column of Table 7 with the first six members $2,2,2,3,4,4$, and the other six ones are obtained by adding 3 to each member. The scaling factor $\sigma^{-12 l}$ (see Proposition 6, part 1) and \mathbf{r}_{-k} in Table 6) has the denominator $2\left\lfloor\frac{12 l+1}{2}\right\rfloor=2^{6 l}$ because $\operatorname{gcd}(\underline{\operatorname{A} 002531}(k), \underline{\operatorname{A002530}}(k))=1$ due to the fact that they are denominators and numerators in lowest terms of fractions (they give the continued fraction convergents of $\sqrt{3}$). Therefore, for each period of length 12 a new factor 2^{6} has to be multiplied, which means for the exponents that $s(k+12 l)=6 l s(k)$. Because in the first period 3 is added to the first six entries of s this results in a period of length 6 and the periodicity up to scaling formula for s becomes $s(k+6 l)=3 l s(k)$. This explains the last term in the explicit formula for s. The second and third terms result from $\underline{\text { A300067 }}$, repeat $(0,0,0,1,2,2$,), and the 2 has then to be added to produce the first six entries of the sequence s. The o.g.f. of $\{s(k)-2\}_{k \geq 0}$ is found from the obvious ones of A300067 and $3\left\lfloor\frac{k}{6}\right\rfloor$.
For the scaled vectors components \vec{v}_{-k}, for $k=0,1, \ldots, 12$, see Table 7 .
The centers O_{-k} are then given by

$$
\begin{equation*}
\vec{O}_{-k}=\overrightarrow{O_{0}, O_{-k}}=-\sum_{j=0}^{k-1} \vec{v}_{-j}, \text { for } k \in \mathbb{N} \text {, and } \vec{O}_{-0}=\overrightarrow{0} \tag{40}
\end{equation*}
$$

Again, some scaling $2^{t(k)}$ is applied to obtain integers in $\mathbb{Q}(\sqrt{3})$ for the components of \vec{O}_{-k}. For $k=0$, the zero-vector $\overrightarrow{0}$, no scaling is needed and $t(0)=0$. The above reasoning for sequence s does not apply immediately because O_{-k}, like O_{k}, is not periodic up to scaling, but in the y_{0} component also a translation appears (for O_{k}, in the complex plane called z_{k}, see the Proposition 6, part 7)). Later, in Proposition 9, part 5), it will be seen that for Z_{-k}, in the coordinate system (X, Y) with origin S, the same sequence t is used to obtain integers in $\mathbb{Q}(\sqrt{3})$ for the real and imaginary parts of $2^{t(k)} Z_{-k}$. Then by the coordinate transformation $x_{0}=Y=\Im(Z)$ and $y_{0}=1-X=1-\Re(Z)$ this will imply integer coordinates in $\mathbb{Q}(\sqrt{3})$ also for O_{-k}. It is therefore again sufficient to consider $t(k)$ for the first period $k=1,2, \ldots, 12$. These values are given in the fifth column of Table 7 as $2,2,2,3,4,3$, and the next six numbers are obtained by adding 3 to these members. This results in the following formula based on the period length 6 sequence $\mathbf{A 3 0 0 0 6 9}$, repeat $(0,0,0,1,2,1$,) (but there the offset is 0 , not 1).

Lemma 5: Sequence t

The formula for the members of sequence t and its o.g.f. is

$$
\begin{align*}
& t(0)=0, \text { and } \\
& t(k)=2+\left\lfloor\frac{k-1(\bmod 6)}{3}\right\rfloor+\left\lfloor\frac{k(\bmod 6)}{5}\right\rfloor+3\left\lfloor\frac{k-1}{6}\right\rfloor=2+\underline{A 174257}(k), \text { for } k \in \mathbb{N} . \\
& \text { O.g.f. : } \quad G(x)=\frac{x\left(2+2 x-x^{3}\right)}{\left(1+x-x^{3}-x^{4}\right)(1-x)} . \tag{41}
\end{align*}
$$

The proof is analogous to the one of the preceding Lemma 4 but the different offset has to be taken into account.

For the scaled vectors components $2^{t(k)} \vec{O}_{-k}$, for $k=0,1, \ldots, 12$, see Table 7 .
The square of the lengths $2^{k} \rho_{-k}^{2}$ are given in Table 5 .
The vertices of the hexagons H_{-k}, for $k \in \mathbb{N}_{0}$, are given in the obvious extension of Proposition 2 with $\sigma^{-1}=\frac{\tau}{2}$ as follows.
Proposition 7: Vertices of hexagons $H_{-k}, k \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\vec{V}_{-k}(j)=\vec{O}_{-k}+\left(\frac{\tau}{2}\right)^{k} \mathbf{R}^{-k+2 j}\binom{1}{0}, \text { for } k=0,1, \ldots, \text { and } j=0,1, \ldots, 5 \tag{42}
\end{equation*}
$$

In order to obtain integers in $\mathbb{Q}(\sqrt{3})$ after some scaling of the components of $\vec{V}_{-k}(j)$ it turns out that one needs only the three scaling sequences $2^{v 0(k)}, 2^{v 1(k)}, 2^{v 2(k)}$ for $\vec{V}_{-k}(0), \vec{V}_{-k}(1), \vec{V}_{-k}(2)$, which also work for $\vec{V}_{-k}(3), \vec{V}_{-k}(4), \vec{V}_{-k}(5)$, respectively. Again it is sufficient for the sequences $v 0, v 1$ and $v 2$ to concentrate on the first six entries besides the values for $k=0$ (the original hexagon H_{0}) which are 0,1 and 1 , respectively (for $\vec{V}_{0}(0)$ see Table 2 for $k=0$ which does not need a scaling). The other six values are obtained by adding 3 , and for each new period of length 12 (starting with $k=1$) another 3 is added. We skip the proof (see the one for the sequence t which is similar), and give the results for these three sequences.
Lemma 6: Sequences $v 0, v 1, v 2$

$$
\begin{align*}
& v 0(0)=0, \text { and } \\
& v 0(k)=1+\left\lfloor\frac{k(\bmod 6)}{2}\right\rfloor+2\left\lfloor\frac{(k-1)(\bmod 6)}{5}\right\rfloor+3\left\lfloor\frac{k-1}{6}\right\rfloor \\
&=1+\underline{A 300076}(k-1), \text { for } k \in \mathbb{N} . \tag{43}\\
& v 0(k)=\underline{A 300068}(k+2), \text { for } k \in \mathbb{N}_{0} . \\
& \text { O.g.f. : } G 0(x)=\frac{x\left(1+x+x^{3}\right)}{\left(1-x^{6}\right)(1-x)} . \tag{44}\\
& v 1(0)=1, \text { and } \\
& v 1(k)=1+(k-1) \quad(\bmod 6)-\left\lfloor\frac{(k-1)(\bmod 6)}{3}\right\rfloor-\left\lfloor\frac{(k-1)(\bmod 6)}{5}\right\rfloor+3\left\lfloor\frac{k-1}{6}\right\rfloor \\
&=1+\underline{A 300068(k+1), \text { for } k \in \mathbb{N} .} \tag{45}\\
& \text { O.g.f. : } G 1(x)=\frac{1+x^{2}+x^{3}+x^{5}-x^{6}}{\left(1-x^{6}\right)(1-x)} \tag{46}\\
& v 2(0)=1, \quad \text { and } \\
& v 2(k)=2+2\left\lfloor\frac{(k-1)(\bmod 6)}{5}\right\rfloor\left\lfloor\frac{k(\bmod 6)}{3}\right\rfloor+3\left\lfloor\frac{k-1}{6}\right\rfloor \\
&=2+\underline{A 300293}(k-1), \text { for } k \in \mathbb{N} . \tag{47}\\
& \text { O.g.f. } G 2(x)=\frac{1+x+x^{3}}{\left(1-x^{6}\right)(1-x)} . \tag{48}
\end{align*}
$$

The o.g.f.s show that $v 2(k)=v 0(k+1)$, for $k \in \mathbb{N}_{0}$.
The discrete hexagon spiral with points O_{-k} can again be interpolated by circular arcs A_{-k} between O_{-k} and O_{-k+1}. The centers of the circles are $\hat{C}_{-k}=V_{-k}(2)$ and the radius is $r_{-k}=\sigma^{-k}=\left(\frac{\tau}{2}\right)^{k}$ (see Table 6 for $2^{\frac{k+1}{2}} r_{-k}$. The precise statement is given in

Proposition 8: Interpolating circular arcs $A_{-k}, k \in \mathbb{N}_{0}$
The circular arcs A_{-k} interpolation between the centers O_{-k} and O_{-k+1} of the discrete hexagon spiral are, for $k \in \mathbb{N}$ given by

$$
\begin{equation*}
A_{-k}=\operatorname{arc}\left(V_{-k}(2), r_{-k}, \frac{-(k+2) \pi}{6}, \frac{-(k+1) \pi}{6}\right) . \tag{49}
\end{equation*}
$$

In Figure 6 this interpolation by arcs is shown in dashed blue (almost coinciding with the later discussed logarithmic spiral shown there in solid red).

Proof:

This is simply the generalization of eq. (26) for negative k. The angle $-\frac{2 \pi}{6}$, the first angle for A_{0} becomes the second angle for A_{-1} and then $-\frac{\pi}{6}$ has to be added in order to obtain the first angle. This continues for each step $A_{-k} \rightarrow A_{-(k+1)}$.

Proposition 9: Logarithmic Spiral for non-positive k

1) The centers of the circles C_{-k} are

$$
\begin{equation*}
Z_{-k}=\left(W^{[-1]}\right)^{[k]}(1)=\left(a^{-1}\right)^{k}, \text { for } k \in \mathbb{N}_{0}, \text { and } a_{-1}=\frac{\tau}{2} e^{-i k \frac{\pi}{6}} \tag{50}
\end{equation*}
$$

2) The spokes $S p_{k}=\overline{S Z_{-k}}$ have lengths $\left(\frac{\tau}{2}\right)^{k}$ and the angles $\phi_{-k}=-k \frac{\pi}{6}$, for $k \in \mathbb{N}_{0}$. For $\sigma^{-k}=$ $\left(\frac{\tau}{2}\right)^{k}$ see Proposition 6, part 1).
3) The explicit form, using de Moivre's formula expressed in terms of the Chebyshev's S polynomials with negative index $S_{-n}(x)=-S_{n-2}(x)$ is like eq. (27) with $k \rightarrow-k$:

$$
\begin{align*}
Z_{-k}= & \frac{1}{2}\left(\left(-3 b_{-k} S_{k-1}(\sqrt{3})+2 a_{-k} S_{k}(\sqrt{3})\right)+\left(-a_{-k} S_{k-1}(\sqrt{3})+2 b_{-k} S_{k}(\sqrt{3})\right) \sqrt{3}-\right. \\
& \left.\left(a_{-k}+b_{-k} \sqrt{3}\right) S_{k-1}(\sqrt{3}) i\right) . \tag{51}
\end{align*}
$$

4) The logarithmic spiral in the complex plane

$$
\begin{equation*}
L S(\phi)=e^{(-\kappa+i) \phi}, \text { with } \kappa=-\frac{\pi}{6} \log (\sigma) . \tag{52}
\end{equation*}
$$

interpolates between all points Z_{k} for $k \in \mathbb{Z}$.
5) Periodicity modulo 12 up to scaling for Z_{-k} :

$$
\begin{equation*}
Z_{-(k+12 l)}=\left(\frac{\tau}{2}\right)^{12 l} Z_{-k}, \text { for } k \in N_{0}, l \in \mathbb{N}_{0} \tag{53}
\end{equation*}
$$

Therefore one has eq. (33) with $k \in \mathbb{Z}$ and $l \in \mathbb{Z}$.

Proof:

1) With the map $W^{[-1]}$ from Proposition 6, eq. (30), with a^{-1} from eq. (25), the hexagon centers O_{-k}, in the complex plane denoted by Z_{-k}, satisfy

$$
\begin{equation*}
Z_{-k}=W^{[-1]}\left(Z_{k-1}\right)=W^{[-k]}\left(Z_{0}\right)=W^{[-k]}(1)=\left(a^{-1}\right)^{k}=a^{-k}, \text { for } k \in \mathbb{N}_{0} . \tag{54}
\end{equation*}
$$

2) This is clear from part 1).
3) This is also clear, repeating the steps which led to Proposition 6, part 2), and the rewriting of S polynomials with negative index, as given.
4) The logarithmic spiral, by construction of the maps W and $W^{[-1]}$, interpolates between all hexagon centers Z_{k}, for $k \in \mathbb{Z}$.
5) The periodicity up to scaling is obvious from part 1).

References

[1] I. N. Bronstein, et al., Taschenbuch der Mathematik, 3. Auflage, 1997, Verlag Harri Deutsch; p.215, eq. (3.403).
[2] Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012.
[3] Wolfdieter Lang, On a Conformal Mapping of Golden Triangles, Papua New Guinea Journal of Mathematics 2 (1991) 12-18. See https://www.itp.kit.edu/~wl/links.html, with corrections.
[4] Mario Livio, The Golden Ratio, Broadway Books, New York, 2002.
[5] Maple ${ }^{T M}$, http://www.maplesoft.com/.
[6] Ernst Peschl, Funktionentheorie I, Bibliographisches Institut, Mannheim, 1967, pp. 26-32.
[7] E. Weisstein's Word of Mathematics, Cayley-Hamilton theorem, http://mathworld.wolfram.com/Cayley-HamiltonTheorem.html.
[8] Wikipedia, Cayley-Hamilton theorem, https://en.wikipedia.org/wiki/Cayley\�\�\�Hamilton_theorem.
[9] Wikipedia, Möbius transformation, https://en.wikipedia.org/wiki/M\�\�bius_transformation.

Keywords: Conformal Mapping, Hexagon, Spiral

Concerned with OEIS sequences A002530, A002531, A002605, A019892, A026150, $\underline{\text { A049310, }} \underline{\underline{A 057079} \text {, }}$ A174257, A300067, A300068, A300069, A300076, A300293.

Figure 1

Figure 2

Figure 1: Construction $H_{k} \rightarrow H_{k+1}: C_{k}\left(O_{k}, r_{k}\right), V_{k}(0),\left(x_{k}, y_{k}\right), D_{k}=\overline{V_{k}(0), V_{k}(2)}, \overline{V_{k}(2), O_{k+1}}=r_{k}$, $C_{k+1}\left(O_{k+1}, r_{k+1}=\sigma^{k}, V_{k+1}(3), V_{k+1}(0),\left(x_{k+1}, y_{k+1}\right), \ldots\right.$
Figure 2: The first four circles and the first eleven centers.

Figure 3

Figure 4

Figure 3: The first three hexagons and the first four circles.
Figure 4: The discreet hexagon spiral of the first 13 centers. The interpolating circular arcs (dashed blue) and the logarithmic spiral (solid red) are almost indistinguishable).

Figure 5

Figure 6

Figure 5: The circle $C_{0}(0,1)$ and the first six circles $C_{-k}\left(O_{-k}, \sigma^{-k}\right)$, for $k=1,2, \ldots, 6$.
Figure 6: The fixed point S, the center $O_{0}=0$, the first 12 centers O_{-k} with $k=1,2, \ldots, 12$. The interpolating circular arcs (dashed blue) and the logarithmic spiral (solid red) are almost indistinguishable.

In the following tables all length have been divided by r_{0}.
Table 1

	$\left(\vec{v}_{k}\right)_{x_{0}}$	$\left(\vec{v}_{k}\right)_{y_{0}}$	$\left(O_{k}\right)_{x_{0}}$	$\left(O_{k}\right)_{y_{0}}$
	$\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$			
1	$-1 / 2,1 / 2$	$-1 / 2,1 / 2$	$-1 / 2,1 / 2$	$-1 / 2,1 / 2$
2	$-5 / 2,3 / 2$	$-1 / 2,1 / 2$	$-3,2$	$-1,1$
3	$-7,4$	$2,-1$	$-10,6$	1,0
4	$-14,8$	$14,-8$	$-24,14$	$15,-8$
5	$-14,8$	$52,-30$	$-38,22$	$67,-38$
6	$38,-22$	$142,-82$	0,0	$209,-120$
7	$284,-164$	$284,-164$	$284,-164$	$493,-284$
8	$1060,-612$	$284,-164$	$1344,-776$	$777,-448$
9	$2896,-1672$	$-776,448$	$4240,-2448$	1,0
10	$5792,-3344$	$-5792,3344$	$10032,-5792$	$-5791,3344$
11	$5792,-3344$	$-21616,12480$	$15824,-9136$	$-27407,15824$
12	$-15824,9136$	$-59056,34096$	0,0	$-86463,49920$
\ldots				

Table 2

k	$\begin{aligned} & \left(\vec{V}_{k}(0)\right)_{x_{0}} \\ & \quad \mathbf{1}, \cdot \sqrt{\mathbf{3}} \end{aligned}$	$\begin{aligned} & \left(\vec{V}_{k}(0)\right)_{y_{0}} \\ & \quad \mathbf{1}, \cdot \sqrt{\mathbf{3}} \\ & \hline \hline \end{aligned}$	$\begin{gathered} \rho_{k}^{2}=\left\|\overrightarrow{O_{0}, O_{k}}\right\|^{2} \\ \cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}} \end{gathered}$	$\begin{gathered} \tan \hat{\varphi}_{k} \\ \cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}} \end{gathered}$
0	1, 0	0, 0	0, 0	0, 0
1	1, 0	-1, 1	2, -1	1, 0
2	-1, 1	$-4,3$	25, -14	1, 1/3
3	-10, 6	-9, 6	209, -120	5/4, 3/4
4	-38, 22	-9, 6	1581, -912	$2,3 / 2$
5	-104, 60	$29,-16$	11717 , -6764	19/4, 15/4
6	-208, 120	$209,-120$	87881 , -50160	∞
7	-208, 1204	777 , -448	646361 , -373176	-71/8, -49/8
8	$568,-328$	2121, -1224	4818705 , -2782080	-7, -35/8
9	4240 , -2448	4241, -24488	35955713 , -20759040	$-265 / 32,-153 / 32$
10	15824, -9136	4241, -2448	$268365505,-154940896$	-209/16, -173/24
11	43232 , -24960	-11583, 6688	2003139041 , -1156512864	-989/32, -539/32
12	86464 , -49920	-86463, 49920	14951869569 , - 8632465920	∞
\ldots				

Table 3

k	$\left(\vec{V}_{k}(1)\right)_{x_{0}}$	$\left(\vec{V}_{k}(1)\right)_{y_{0}}$	$\left(\vec{V}_{k}(2)\right)_{x_{0}}$	$\left(\vec{V}_{k}(2)\right)_{y_{0}}$
	$\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$			
	$1 / 2,0$	$0,1 / 2$	$-1 / 2,0$	$0,1 / 2$
1	$-1 / 2,1 / 2$	$-3 / 2,3 / 2$	$-2,1$	$-1,1$
2	$-5,3$	$-4,3$	$-7,4$	$-1,1$
3	$-19,11$	$-4,3$	$-19,11$	$6,-3$
4	$-52,30$	$15,-8$	$-38,22$	$39,-22$
5	$-104,60$	$105,-60$	$-38,22$	$143,-82$
6	$-104,60$	$389,-224$	$104,-60$	$389,-224$
7	$284,-164$	$1061,-612$	$776,-448$	$777,-448$
8	$2120,-1224$	$2121,-1224$	$2896,-1672$	$777,-448$
9	$7912,-4568$	$2121,-1224$	$7912,-4568$	$-2119,1224$
10	$21616,-12480$	$-5791,3344$	$15824,-9136$	$-15823,9136$
11	$43232,-24960$	$-43231,24960$	$15824,-9136$	$-59055,34096$
12	$43232,-24960$	$-161343,93152$	$-43232,24960$	$-161343,93152$
\ldots				

Table 4

k	$\left(\vec{V}_{k}(3)\right)_{x_{0}}$	$\left(\vec{V}_{k}(3)\right)_{y_{0}}$	$\left(\vec{V}_{k}(4)\right)_{x_{0}}$	$\left(\vec{V}_{k}(4)\right)_{y_{0}}$
	$\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$			
0	$-1,0$	0,0	$-1 / 2,0$	$0,-1 / 2$
1	$-2,1$	0,0	$-1 / 2,1 / 2$	$1 / 2,-1 / 2$
2	$-5,3$	$2,-1$	$-1,1$	$2,-1$
3	$-10,6$	$11,-6$	$-1,1$	$6,-3$
4	$-10,6$	$39,-22$	$4,-2$	$15,-8$
5	$28,-16$	$105,-60$	$28,-16$	$29,-16$
6	$208,-120$	$209,-120$	$104,-60$	$29,-16$
7	$776,-448$	$209,-120$	$284,-164$	$-75,44$
8	$2120,-1224$	$-567,328$	$568,-328$	$-567,328$
9	$4240,-2448$	$-4239,2448$	$568,-328$	$-2119,1224$
10	$4240,-2448$	$-15823,9136$	$-1552,896$	$-5791,3344$
11	$-11584,6688$	$-43231,24960$	$-11584,6688$	$-11583,6688$
12	$-86464,49920$	$-86463,49920$	$-43232,24960$	$-11583,6688$
\ldots				

Table 5

k	$\begin{gathered} \left(\vec{V}_{k}(5)\right)_{x_{0}} \\ \cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}} \end{gathered}$	$\begin{gathered} \left(\vec{V}_{k}(5)\right)_{y_{0}} \\ \cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}} \end{gathered}$	$\begin{gathered} 2^{k} \rho_{-k}^{2}=2^{k}\left\|\overrightarrow{O_{0}, O_{-k}}\right\|^{2} \\ \cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}} \end{gathered}$	$\cdot 1, \cdot \sqrt{3}$
0	1/2, 0	0, -1/2	0, 0	$0,-1 / 2$
1	1, 0	0, 0	1, 0	1/2, -1/2
2	1, 0	$-1,1$	7, 2	$2,-1$
3	$-1,1$	$-4,3$	34,15	$6,-3$
4	$-10,6$	-9, 6	141, 72	15, -8
5	-38, 22	$-9,6$	526, 285	$29,-16$
6	-104, 60	29, -16	1831, 1020	29, -16
7	-208, 120	209, -120	6154,3479	$-75,44$
8	-208, 120	$777,-448$	20625, 11760	$-567,328$
9	568, -328	2121, 1224	70738 , 40545	-2119, 1224
10	4240 , -2448	4241, -2448	251527, 144628	-5791, 3344
11	15824, -9136	4241, -2448	925354, 533071	-11583, 6688
12	43232, -24960	-11583, 6688	3481569 , 2007720	$-11583,6688$
\ldots				

Table 6

k	$r_{k}=\left\|\overrightarrow{S, O_{k}}\right\|=\sigma^{k}$	$2^{\left\lfloor\frac{k+1}{2}\right\rfloor} \mathbf{r}_{-k}$	$\left(O_{k}\right)_{X}$	$\left(O_{k}\right)_{Y}$
	$\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$			
0	1,0	1,0	1,0	0,0
1	$-1,1$	1,1	$3 / 2,-1 / 2$	$-1 / 2,1 / 2$
2	$4,-2$	2,1	$2,-1$	$-3,2$
3	$-10,6$	5,3	0,0	$-10,6$
4	$28,-16$	7,4	$-14,8$	$-24,14$
5	$-76,44$	19,11	$-66,38$	$-38,22$
6	$208,-120$	26,15	$-208,120$	0,0
7	$-568,328$	71,41	$-492,284$	$284,-164$
8	$1552,-896$	97,56	$-776,448$	$1344,-776$
9	$-4240,2448$	265,153	0,0	$4240,-2448$
10	$11584,-6688$	362,209	$5792,-3344$	$10032,-5792$
11	$-31648,18271$	989,571	$27408,-15824$	$15824,-9136$
12	$86464,-49920$	1351,780	$86464,-49920$	0,0
\ldots				

Table 7

k	$s(k)$	$2^{s(k)}(\vec{v}-k)_{x_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$	$2^{s(k)}(\vec{v}-k)_{y_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$	$t(k)$	$2^{t(k)}\left(O_{-k}\right)_{x_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$	$2^{t(k)}\left(O_{-k}\right)_{y_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$
0	2	1,1	$-1,1$	0	0,0	0,0
1	2	2,1	$-1,0$	2	$-1,-1$	$1,-1$
2	2	2,1	$-2,-1$	2	$-3,-2$	$2,-1$
3	3	2,1	$-7,-4$	2	$-5,-3$	4,0
4	4	$-5,-3$	$-19,-11$	3	$-12,-7$	15,4
5	4	$-19,-11$	$-19,-11$	4	$-19,-11$	49,19
6	5	$-71,-41$	$-19,-11$	3	0,0	34,15
7	5	$-97,-56$	26,15	5	71,41	155,714
8	5	$-97,-56$	97,56	5	168,97	126,56
9	6	$-97,-56$	382,2098	5	265,153	32,0
10	7	265,153	989,571	6	627,362	$-298,-209$
11	7	989,571	989,571	7	989,571	$-1585,-989$
12	8	3691,2131	989,571	6	0,0	$-1287,-780$
\ldots						

Table 8

k	$v 0(k)$	$2^{v 0(k)}\left(\vec{V}_{-k}(0)\right)_{x_{0}}$	$2^{v 0(k)}\left(\vec{V}_{-k}(0)\right)_{y_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$	$2^{v 0(k)}\left(\vec{V}_{-k}(3)\right)_{x_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$	$2^{v 0(k)}\left(\vec{V}_{-k}(3)\right)_{y_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$
0	0	1,0	0,0	$-1,0$	0,0
1	1	1,0	$0,-1$	$-2,-1$	1,0
2	2	$-1,-1$	$-1,-3$	$-5,-3$	5,1
3	2	$-5,-3$	$-1,-3$	$-5,-3$	9,3
4	3	$-19,-11$	$3,-3$	$-5,-3$	27,11
5	3	$-26,-15$	15,4	7,4	34,15
6	3	$-26,-15$	34,15	26,15	34,15
7	4	$-26,-15$	113,56	97,56	42,15
8	5	71,41	297,153	256,153	$-39,-41$
9	5	265,153	297,153	265,153	$-233,-153$
10	6	989,571	329,153	265,153	$-925,-571$
11	6	1351,780	$-298,-209$	$-362,-209$	$-1287,-780$
12	6	1351,780	$-1287,-780$	$-1351,-780$	$-1287,-780$
\ldots					

Table 9

k	$v 1(k)$	$2^{v 1(k)}\left(\vec{V}_{-k}(1)\right)_{x_{0}}$	$2^{v 1(k)}\left(\vec{V}_{-k}(1)\right)_{y_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$	$2^{v 1(k)}\left(\vec{V}_{-k}(4)\right)_{x_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$	$2^{v 1(k)}\left(\vec{V}_{-k}(4)\right)_{y_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$
0	1	1,0	0,1	$-1,0$	$0,-1$
1	1	1,0	1,0	$-2,-1$	$0,-1$
2	2	1,0	$2,-1$	$-7,-4$	$2,-1$
3	3	$-1,-1$	$3,-3$	$-19,-11$	13,3
4	3	$-5,-3$	$3,-3$	$-19,-11$	27,11
5	4	$-19,-11$	$11,-3$	$-19,-11$	87,41
6	4	$-26,-15$	23,4	26,15	113,56
7	4	$-26,-15$	42,15	97,56	113,56
8	5	$-26,-15$	129,56	362,209	129,56
9	6	71,41	329,153	989,571	$-201,-153$
10	6	265,153	329,153	989,571	$-925,-571$
11	7	989,571	393,153	989,571	$-3563,-2131$
12	7	1351,780	$-234,-209$	$-1351,-780$	$-4914,-2911$
\cdots					

Table 10

k	$v 2(k)$	$2^{v 2(k)}\left(\vec{V}_{-k}(2)\right)_{x_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$	$2^{v 2(k)}\left(\vec{V}_{-k}(2)\right)_{y_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$	$2^{v 2(k)}\left(\vec{V}_{-k}(5)\right)_{x_{0}}$ $\cdot \mathbf{1}, \cdot \sqrt{\mathbf{3}}$	$2^{v 2(k)}\left(\vec{V}_{-k}(5)\right)_{y_{0}}$
0	1	$-1,0$	$0,1, \cdot \sqrt{\mathbf{3}}$		
1	2	$-1,-1$	3,1	1,0	$0,-1$
2	2	$-1,-1$	5,1	$-1,-1$	$-1,-3$
3	3	$-1,-1$	13,3	$-5,-3$	$-1,-3$
4	3	2,1	15,4	$-26,-15$	$3,-3$
5	3	7,41	15,4	$-26,-15$	34,15
6	4	26,15	23,4	$-26,-15$	113,56
7	5	71,41	$13,-11$	71,41	297,153
8	5	71,41	$-39,-41$	265,153	297,153
9	6	71,41	$-201,-153$	989,571	329,153
10	6	$-97,-56$	$-298,-209$	1351,780	$-298,-209$
11	6	$-362,-209$	$-298,-209$	1351,780	$-1287,-780$
12	7	$-1351,-780$	$-234,-209$	1351,780	$-4914,-2911$
\ldots					

[^0]: ${ }^{1}$ wolfdieter.lang@partner.kit.edu, http://www.itp.kit.edu/~wl/

