# Memoir on Napoléon's Theorem 

Wolfdieter Lang ${ }^{1}$

For the history on the so called Napoléon's Theorem see [1]. This theorem and the related Napoléon points are treated in Wikipedia [5], [6] and Weisstein's Word of Mathematics [3], [4].

Figures 1 and 2 show the outer and inner version of this theorem, respectively.
a) Outer Napoléon's triangle and -theorem; Napoléon point and Fermat-Torricelli point

The original general triangle is $T:=\triangle(A, B, C)$ with sides $a, b, c$. The input parameters are the base $c$, the side $a$ and the angle $\beta=\angle(A, B, C)$. The Cartesian coordinate representation is

$$
\begin{equation*}
A \doteq[0,0], \quad B \doteq[c, 0], \quad C \doteq[c-a \cos \beta, a \sin \beta] \doteq[b \cos \alpha, b \sin \alpha] \tag{1}
\end{equation*}
$$

giving angle

$$
\begin{equation*}
\alpha=\angle(C, A, B)=\arctan (a \sin \beta /(c-a \cos \beta)), \tag{2}
\end{equation*}
$$

and side

$$
\begin{equation*}
b=\frac{\sin \beta}{\sin \alpha} a=\sqrt{a^{2}+c^{2}-2 a c \cos \beta} \tag{3}
\end{equation*}
$$

where the second formula used the cos theorem.
The centroid (or barycenter, in German Schwerpunk, $X(2)$ in the ETC $[2],[7]$ ) of $T$, the intersection of the three medians defined via the midpoint of the sides $M_{a}, M_{b}$ and $M_{c}$, is $S \doteq\left[S_{x}, S_{y}\right]$ with $S_{x}=\frac{c}{2} \tan \tau /(\tan \tau-\tan \sigma)$ and $S_{y}=\tan \tau S_{x}$, with $\tau:=\angle\left(M_{a}, A, B\right)$ and $\sigma:=\angle\left(C, M_{c}, B\right)$. I.e., $\tan \tau=\frac{a}{2} \sin \beta /\left(c-\frac{a}{2} \cos \beta\right)$ and $\tan \sigma=a \sin \beta /\left(\frac{c}{2}-a \cos \beta\right)$. In the Figures this is the black point $S$.
The outside equilateral triangles (oriented positively like $T$ ) over the sides $a, b, c$ have apices $A^{\prime}, B^{\prime}$ and $C^{\prime}$, respectively, with Cartesian coordinates:

$$
\begin{align*}
A^{\prime} & \doteq\left[c-a \cos \left(\frac{\pi}{3}+\beta\right), a \sin \left(\frac{\pi}{3}+\beta\right)\right]  \tag{4}\\
B^{\prime} & \doteq\left[b \cos \left(\frac{\pi}{3}+\alpha\right), b \sin \left(\frac{\pi}{3}+\alpha\right)\right]  \tag{5}\\
& \doteq\left[-b \sin \left(\frac{\pi}{3}-\beta^{\prime}\right), b \cos \left(\frac{\pi}{3}-\beta^{\prime}\right)\right] \\
C^{\prime} & \doteq[c / 2,-\sqrt{3} c / 2] \tag{6}
\end{align*}
$$

Here the angle $\beta^{\prime}:=\angle\left(A, B, S_{b}\right)$ has also been used, where $S_{b}$ is the centroid of the equilateral triangle with base $b$. The coordinates of these centroids are

$$
\begin{align*}
S_{a} & \doteq\left[c-\frac{\sqrt{3}}{3} a \cos \left(\beta+\frac{\pi}{6}\right), \frac{\sqrt{3}}{3} a \sin \left(\beta+\frac{\pi}{6}\right)\right]  \tag{7}\\
S_{b} & \doteq\left[\frac{\sqrt{3}}{3} b \cos \left(\alpha+\frac{\pi}{6}\right), \frac{\sqrt{3}}{3} b \sin \left(\alpha+\frac{\pi}{6}\right)\right]  \tag{8}\\
S_{c} & \doteq\left[\frac{c}{2},-\frac{\sqrt{3}}{6} c\right] \tag{9}
\end{align*}
$$

[^0]Thus

$$
\begin{equation*}
\tan \beta^{\prime}=\frac{\left(S_{b}\right)_{y}}{c-\left(S_{b}\right)_{x}} \tag{10}
\end{equation*}
$$

## Outer Napoléon's theorem:

a) The outer Napoléon triangle $T_{S}:=\triangle\left(S_{a}, S_{b}, S_{c}\right)$ (oriented positively like $T$ ) is equilateral with side length $s$.
b) $s^{2}=\frac{1}{6}\left(a^{2}+b^{2}+c^{2}\right)+\frac{2}{\sqrt{3}} F$, where the area of $\triangle(A, B, C)$ is $F=\frac{1}{2} c a \sin \beta=\frac{1}{2} c b \sin \alpha$.
c) Hence the area of equilateral triangle $T_{S}$ is

$$
\begin{equation*}
F_{S}=\sqrt{3}\left(\frac{s}{2}\right)^{2}=\frac{\sqrt{3}}{24}\left(a^{2}+b^{2}+c^{2}\right)+\frac{1}{2} F=\frac{1}{6} \sum_{i=1}^{3} F_{i}+\frac{1}{2} F \tag{11}
\end{equation*}
$$

where the areas of the equilateral triangles with centroids $S_{a}, S_{b}$ and $S_{c}$ are called $F_{1}, F_{2}$ and $F_{3}$, respectively.

Proof: By brute force and applying symmetry properties. First the square of length $\overline{S_{c}, S_{b}}$ is computed.

$$
\begin{equation*}
s(c, b)^{2}:={\overline{S_{c}, S_{b}}}^{2}=\frac{1}{3}\left(b^{2}+c^{2}\right)+\frac{1}{3} b c(\sqrt{3} \sin \alpha-\cos \alpha) \tag{12}
\end{equation*}
$$

after application of the addition theorems for $\sin$ and cos. Using $b c \sin \alpha=A$ and the cos theorem $2 c b \cos \alpha=b^{2}+c^{2}-a^{2}$ one obtains the claimed formula $s(c, b)^{2}=\frac{1}{6}\left(a^{2}+b^{2}+c^{2}\right)+\frac{2}{\sqrt{3}} F$.
Then, by exchange of $b \rightarrow a$ and $\beta \rightarrow \alpha$ (due to a sign change under the square signs):

$$
\begin{equation*}
s(c, a)^{2}:={\overline{S_{c}, S_{a}}}^{2}=\frac{1}{3}\left(a^{2}+c^{2}\right)+\frac{1}{3} a c(\sqrt{3} \sin \beta-\cos \beta) . \tag{13}
\end{equation*}
$$

which also leads to the claimed formula for $s^{2} \rightarrow s(c, a)^{2}$.
The same for $s(a, b)^{2}:={\overline{S_{a}, S_{b}}}^{2}$ would becomes more tedious but this computation is not needed, because a rotation of the original triangle around $B$ with angle $\pi-\beta$ in the negative sense (such that the new coordinate of $C$ becomes $[c+a, 0]$ ) leads to a new triangle with rôle interchange compared to the calculation of $s(c, b)^{2}$ like $c \rightarrow a, b \rightarrow c$ and $\alpha \rightarrow \beta$ (the shift from the origin to $B$ is not of interest for length computations). This exchanges in $s(c, b)^{2}$ from eq. (12) shows then, with the formulae for $a c \sin \beta$ and $2 c a \cos \beta$, that $s(c, b)^{2}$ leads to the same final formula as for $s(a, b)^{2}$.

## Outer Napoléon point N1

Claim: The three straight lines connecting the points $A, B, C$ to the points $S_{a}, S_{b}, S_{c}$, respectively, intersect at the outer (or first) Napoléon point $N_{1}(X(17) E T C$ [2], [7]) with Cartesian coordinates

$$
\begin{equation*}
N_{1} \doteq\left[N 1_{x}, N 1_{y}=\tan \alpha^{\prime} N 1_{x}\right], \text { with } N 1_{x}=c\left(\frac{\tan \beta^{\prime}}{\tan \alpha^{\prime}+\tan \beta^{\prime}}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\tan \alpha^{\prime}=\frac{\left(S_{a}\right)_{y}}{\left(S_{a}\right)_{x}} \tag{15}
\end{equation*}
$$

and $\tan \beta^{\prime}$ from eq. (10).

## Proof:

The straight line through $A$ and $S_{a}$ and the one through $B$ and $S_{b}$ intersect at the given point $N 1$, which is elementary.
To prove that this $N 1$ point also lies on the straight line through $C$ and $S_{c}$ one does not need a (lengthy) computation. One resorts again to the above used symmetry argument: consider also the rotated triangle
around point $B$ with angle $\pi-\beta$ in the negative sense. This is the rotation $\mathbf{R}^{-1}(\pi-\beta)=-\mathbf{R}^{-1}(\beta)$ around $B$. The point $N 1$ found above rotates to a point $N 1^{\prime}$. But this point is now found also in the same way as above in the old triangle by intersecting the straight line through the new origin $O^{\prime}=B$ and $S_{a^{\prime}}$ in the new equilateral triangle over base $a^{\prime}$ of length $b$, and the one through $B^{\prime}$ (the rotated $C$ ) and $S_{b^{\prime}}$ in the equilateral triangle over base $b^{\prime}$ of length $c$. Therefore, the line through $B^{\prime}$ and $S_{b^{\prime}}$ with point $N 1^{\prime}$ rotates back to the line through $C$ and $S_{c}$ through $N 1$.

## Outer Fermat-Torricelli point F1

Claim: The three straight lines connecting the triangle vertices $A, B, C$ to the respective apices $A^{\prime}, B^{\prime}, C^{\prime}$ of the equilateral triangles intersect at the so-called outer (or first) Fermat-Torricelli point $F 1$ ( $X(13$ ) in the ETC). Its Cartesian coordinates are

$$
\begin{equation*}
F 1 \doteq\left[F 1_{x}, F 1_{y}=\tan \alpha^{\prime \prime} F 1_{x}\right], \text { with } F 1_{x}=c\left(\frac{\tan \beta^{\prime \prime}}{\tan \alpha^{\prime \prime}+\tan \beta^{\prime \prime}}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\tan \alpha^{\prime \prime}=\frac{A_{y}^{\prime}}{A_{x}^{\prime}}, \text { and } \tan \beta^{\prime \prime}=\frac{B_{y}^{\prime}}{\left(c-B_{x}^{\prime}\right)} . \tag{17}
\end{equation*}
$$

## Proof:

This runs along the same lines as the one given for $N 1$ above if the corresponding angles are replaced.
b) Inner Napoléon's triangle, and -theorem; Napoléon point and Fermat-Torricelli point

For this case the above three equilateral triangles are mirrored at their corresponding base sides. In Figure 2 we use the same notations as in the outer case, but here a tilde indicates the inner case.
The Cartesian coordinates are obtained by changing $\frac{\pi}{3} \rightarrow-\frac{\pi}{3}$ in eqs. (4) to (6) and $\frac{\pi}{6} \rightarrow-\frac{\pi}{6}$ in eqs. (7) to (9). Also the $y$-coordinate of $\tilde{C}^{\prime}$ is now positive.

$$
\begin{align*}
\tilde{A}^{\prime} & \doteq\left[c-a \cos \left(\beta-\frac{\pi}{3}\right), a \sin \left(\beta-\frac{\pi}{3}\right)\right],  \tag{18}\\
\tilde{B}^{\prime} & \doteq\left[b \cos \left(\alpha-\frac{\pi}{3}\right), b \sin \left(\alpha-\frac{\pi}{3}\right)\right],  \tag{19}\\
& \doteq\left[b \sin \left(\tilde{\beta}^{\prime}+\frac{\pi}{3}\right), b \cos \left(\tilde{\beta}^{\prime}+\frac{\pi}{3}\right)\right], \\
\tilde{C}^{\prime} & \doteq[c / 2,-\sqrt{3} c / 2] . \tag{20}
\end{align*}
$$

Here $\tan \tilde{\beta}^{\prime}$ is defined by eq. (10), but with the following tilde centroids.

$$
\begin{align*}
& \tilde{S}_{a} \doteq\left[c-\frac{\sqrt{3}}{3} a \cos \left(\beta-\frac{\pi}{6}\right), \frac{\sqrt{3}}{3} a \sin \left(\beta-\frac{\pi}{6}\right)\right]  \tag{21}\\
& \tilde{S}_{b} \doteq\left[\frac{\sqrt{3}}{3} b \cos \left(\alpha-\frac{\pi}{6}\right), \frac{\sqrt{3}}{3} b \sin \left(\alpha-\frac{\pi}{6}\right)\right]  \tag{22}\\
& \tilde{S}_{c} \doteq\left[\frac{c}{2}, \frac{\sqrt{3}}{6} c\right] \tag{23}
\end{align*}
$$

The equilateral inner Napoléon triangle $T_{\tilde{S}}=\triangle\left(\tilde{S}_{a}, \tilde{S}_{b}, \tilde{S}_{c}\right)$ is now oriented in the negative sense. The square of its side length is $\tilde{s}$ given by

$$
\begin{equation*}
\tilde{s}^{2}=\frac{1}{6}\left(a^{2}+b^{2}+c^{2}\right)-\frac{2}{\sqrt{3}} F, \tag{24}
\end{equation*}
$$

i.e., the (non-oriented) area of the inner Napoléon triangle is

$$
\begin{equation*}
\left|F_{\tilde{S}}\right|=\sqrt{3}\left(\frac{\tilde{s}^{2}}{2}\right)^{2}=\frac{1}{6} \sum_{i=1}^{3} F_{i}-\frac{1}{2} F \tag{25}
\end{equation*}
$$

This can be computed from $\tilde{s}(c, b)=\bar{S}_{c} \tilde{S}_{b}^{2}$ as above, and the sign change follows.
Together with eq. (11) this yields the following area theorem.

## Area Theorem:

a) For the oriented areas: $F_{S}+F_{\tilde{S}}=F$.
b) For the non-oriented areas $F_{S}-\left|F_{\tilde{S}}\right|=\frac{1}{3} \sum_{i=1}^{3} F_{i}$.

The formulae eqs. (14) and (15) also work for the inner (or second) Naplo'eon point $\mathbf{N} 2(X(18)$ in the $E T C$ ) but with the angles $\tilde{\alpha}^{\prime}$ and $\tilde{\beta}^{\prime}$ given now by the $\tilde{S}_{a}$ and $\tilde{S}_{b}$ coordinates from eqs. (21) and (22). Similarly, the formulae eqs. (16) and (17) also work for the inner (or second) Fermat-Toriccelli point F2 $(X(14)$ in the $E T C)$ but now with the angles taken from the coordinates of $\tilde{A}^{\prime}$ and $\tilde{B}^{\prime}$ from eqs. (18) and (19), respectively.


Figure 1
Outer Napoléon's Theorem


Figure 2
Inner Napoléon's Theorem

In some (different) length units: $c=1, a=1, \beta=\frac{7 \pi}{12}$

## References

[1] Branko Grünbaum, Is Napoleon's Theorem Really Napoleon's Theorem?, Am. Math. Monthly 119,6, pp, 495-501,
https://www.jstor.org/stable/10.4169/amer.math.monthly.119.06.495?seq=1\#page_scan_tab_cont
[2] Clark Kimberling, Encyclopedia of Triangle Centers (ETC),
https://faculty.evansville.edu/ck6/encyclopedia/ETC.htm
[3] E. Weisstein's Word of Mathematics, Napoléon's Theorem, http://mathworld.wolfram.com/NapoleonsTheorem.html.
[4] E. Weisstein's Word of Mathematics, Napoléon Points, http://mathworld.wolfram.com/NapoleonPoints.html.
[5] Wikipedia, Napoléon's Theorem theorem, https://en.wikipedia.org/wiki/Napoleon's_theorem.
[6] Wikipedia, Napoléon Points, https://en.wikipedia.org/wiki/Napoleon_points.
[7] Clark Kimberling's Encyclopedia of Triangle Centers, https://en.wikipedia.org/wiki/Encyclopedia_of_Triangle_Centers


[^0]:    ${ }^{1}$ wolfdieter.lang@partner.kit.edu, http://www.itp.kit.edu/~wl/

