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Abstract

The exponential generating function of ordinary generating functions of diagonal sequences of general Sheffer

triangles is computed by an application of Lagrange’s theorem. For the special Jabotinsky type this is already

known. An analogous computation for general Riordan number triangles leads to a formula for the logarithmic

generating function of the ordinary generating functions of the product of the entries of the diagonal sequence

of Pascal’s triangle and those of the Riordan triangle. For some examples these ordinary generating functions

yield in both cases coefficient triangles of certain numerator polynomials.

1 Introduction and Summary

The study of the diagonal sequences of Sheffer number triangles (exponential, also known as binomial, lower
triangular convolution matrices) is interesting. The name exponential Riordan arrays is sometimes used for these
triangles. The Sheffer structure immediately leads to the exponential generating functions (e.g.f.s) of the column
sequences. It is more difficult to obtain information about these functions for diagonal sequences. Bala [1] has
shown, following Drake [3], for a special type of Sheffer triangles, called Jabotinsky triangles by Knuth [6], that the
e.g.f. of the ordinary generating functions (o.g.f.s ) of the diagonal sequences can be computed from Lagrange’s
inversion theorem. We present in the first part the result for general Sheffer triangles and give some examples.
They lead to other number triangles providing the coefficients of the numerator polynomials of the o.g.f.s of the
diagonal sequences. In the second part the same analysis is done for general Riordan number triangles (ordinary
lower triangular convolution matrices). However, one does not obtain information about the diagonal sequences
themselves but on certain products of the diagonal entries with other numbers. We will give the result for the
logarithmic generating function of the o.g.f.s of the sequences of the product of the entries of the diagonals of
the Riordan and the Pascal triangle. (The Pascal triangle is a special Riordan triangle, and also a special Sheffer
triangle). Also in this case special examples lead to coefficient triangles for the numerator polynomials of these
o.g.f.s .

For Sheffer and Riordan triangles see [11], [12] and the W. Lang link [7] in OEIS [10] A006232 (henceforth we will
omit the OEIS reference for A-numbers). There also references can be found.

Proofs for not obvious or not standard Sheffer or Riordan statements will be given in section 2.

Part A: Sheffer triangles and their diagonals

A Sheffer triangle S (an infinite dimensional lower triangular exponential convolution matrix; for practical

purpose a N ×N matrix) is denoted by S = (g, f) with e.g.f. g(s) =

∞∑

k=0

gn
sn

n!
, where g(0) = g0 = 1 (w.l.o.g.),

and f(s) = s f̂(s) with e.g.f. f̂(s) =

∞∑

k=0

f̂n
sn

n!
, where f̂(0) = f̂0 6= 0. The column sequence SCol(m) =

{S(n,m)}∞n=0 (with m leading zeros) has e.g.f. ESCol(s,m) =
∞∑

n=m

S(n,m)
sn

n!
, for m ∈ N0 := {0, 1, ...}, given

by

ESCol(s,m) = g(s)
f(s)m

m!
= g(s)

sm f̂(s)m

m!
. (1)
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In this paper formal power series (f.p.s.) are considered, and therefore no convergence issues are treated.

The (ordinary, not exponential) row polynomials (called Sheffer polynomials) are PS(n, x) =
∑n

m=0 S(n, m)xn.

They have e.g.f. EPS(s, x) =

∞∑

n=0

PS(n, x)
sn

n!
given by

EPS(s, x) = g(s) exf(s) , (2)

which is also called the e.g.f. of the S triangle.

The important exponential convolution property of Sheffer polynomials, implied by eq. (2), is

PS(n, x + y) =

n∑

k=0

(
n

k

)
P (k, x)PS(n− k, y) =

n∑

k=0

(
n

k

)
PS(k, x)P (n− k, y) , (3)

where P are the special Sheffer polynomials P = (1, f), called associated polynomials to S = (g, f). (See Roman
[11] for Sheffer sequences of polynomials. The notation there differs from the present one. See the above mentioned
W. Lang link for the relation between them.)

The diagonal sequences are labeled by d ∈ N0, with d = 0 for the main diagonal. Their entries are

DS(d, m) = S(d+m, m), for m ∈ N0 . (4)

Their o.g.f. is

GDS(d, t) =
∞∑

m=0

DS(d, m) tm (5)

( the use of t instead of x is motivated by the later appearance of the parameter t), and the e.g.f. of {GDS(d, t)}∞d=0

is taken as

EGDS(y, t) :=

∞∑

d=0

GDS(d, t)
yd+1

(d+ 1)!
. (6)

(The unconventional powers for this e.g.f. and the use of y instead of s will become clear later).

To derive a formula for this e.g.f. EGDS(y, t) of o.g.f.s of diagonal sequences we need Lagrange’s theorem and an
application.

Lemma: Lagrange theorem and inversion [4], p. 523, eq. (29), [13], p. 133.

a) For H̃(x) = H(y(x)) with implicit y = y(x) = a + xϕ(y) (here as f.p.s. ) one has

H̃(x) = H(a) +

∞∑

n=1

xn

n!

dn−1

dan−1
[ϕn(a)H ′(a)] . (7)

b) With a = 0, y = y(x) = xψ(x), and the compositional inverse x = y[−1] = x(y) it follows that

H̃(y) = H(x(y)) = H(0) +

∞∑

n=1

yn

n!

dn−1

dan−1

[(
1

ψ(a)

)n

H ′(a)

]∣∣∣∣
a=0

= H(0) +

∞∑

n=1

yn

n!
(n− 1)! [an−1)]

[(
1

ψ(a)

)n

H ′(a)

]
(8)

where [an]h(a) picks the coefficient of an of a f.p.s. h = h(a). Applying this Lemma, part b), introducing a

parameter t, to y = y(t;x) = xψ(t;x) = x (1 − t f̂(x)) = x − t f(x) with the Sheffer function f , and taking
H(x) =

∫
dx g(x), with the Sheffer function g, we obtain with the compositional inverse x = x(t; y) of y = y(t;x)

Proposition 1:

EGDS(y, t) = H(x(t; y)) − H(0) =

[∫
dx g(x)

]∣∣∣∣
x= x(t;y)

−

[∫
dx g(x)

]∣∣∣∣
x=0

. (9)

As the last equation shows one has first to compute x = x(t; y), the compositional (Lagrange) inverse of y = y(t;x).

This is the case H(x) = x in the Lemma, part b, with the chosen ψ = ψ(t;x) = 1 − t f̂(x). This belongs to the
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associated Sheffer case J = (1, f) (the Jabotinsky type [6], here called J instead of S). This yields the following
corollary which has been treated already by Bala [1].

Corollary 1: Jabotinsky case

EGDJ(y, t) = x(t; y) . (10)

This means that for J = (1, f) the e.g.f. of the o.g.f.s of the diagonal sequences is just the compositional inverse
of y = y(t;x) = x − t f(x).

Examples

1) ([3],Example 1.10.1, and [1], Example 2) J = (1, es − 1), the Stirling triangle of the second kind, given in

A048993. The Lagrange inverse x = x(t; y) of y = x

(
1 − t

ex − 1

x

)
turns out to be (for Maple [9] one uses the

expansion up to some power to avoid error messages from x → 0)

x(t; y) =
1

1 − t
y +

t

(1 − t)3
y2

2!
+
t (1 + 2 t)

(1 − t)5
y3

3!
+
t (1 + 8 t + 6 t2)

(1 − t)7
y4

4!
+
t (1 + 22 t + 58 t2 + 24 t3)

(1 − t)9
y5

5!
+ ... .

(11)

The coefficients of
yd+1

(d+ 1)!
, for d ≥ 0, are the o.g.f.s of the diagonal sequences of J . (In [1] d = n − 1.) E.g.,

for d = 2, GDJ(2, t) =
t (1 + 2 t)

(1 − t)5
generates the third diagonal sequence {0, 1, 7, 25, 65, 140, 266, 462, 750, ...}

which is A001296. The coefficients of the numerator polynomials are [[1], [0, 1], [0, 1, 2], ], .... Without the first
column and offset 1 this is A008517 (or A201637), the second-order Eulerian triangle, call it Euler2.

2) P · S2: S = (es, es − 1). This is the product of the Sheffer matrices P = (es, s) (of the Appell type), the
Pascal triangle A007318, and J = (1, es − 1), Stirling2 from the previous example.
Remember that Sheffer matrices build a group (for the group law, see, e.g., [7], Lemma 9, eq. (139)).
Here H(x) =

∫
dxex = ex, H(0) = 1 and the compositional inverse x(t; y) is the one from the previous example.

Now from eq. (9)

EGDS(y, t) = ex(t; y) − 1

=
1

1 − t
y +

1

(1 − t)3
y2

2!
+

1 + 2 t

(1 − t)5
y3

3!
+

1 + 8 t + 6 t2

(1 − t)7
y4

4!
+

1 + 22 t + 58 t2 + 24 t4

(1 − t)9
y5

5!
+ ... .(12)

This is similar to the above e.g.f. but now the coefficient triangle for the numerator polynomials of the o.g.f.s is
really A201867 (with the main diagonal {1, repeat 0}).

In this way the Sheffer triangle PS · S2 maps to the Euler2 triangle A201867 (which is not Sheffer).

3) P · |S1|: S = (es, − log(1 − s)). This is the product of the Sheffer matrices P = (es, s) (of the Appell type),
the Pascal triangle A007318, and J = (1, − log(1 − s)) = |Stirling1| given in A132393= |A048994|. This forms
the Sheffer triangle A094816 (coefficients of the Charlier polynomials, see e.g., [2]).
Here H(x) =

∫
dx ex = ex, H(0) = 1, like in the previous example, and the compositional inverse x(t; y) of

y = t(t;x) = x

(
1 − t

(
− log(1 − x)

x

))
is (for Maple the expansion up to a certain power is taken)

x(t; y) =
1

1 − t
y+

t

(1 − t)3
y2

2!
+
t (2 + t)

(1 + t)5
y3

3!
+
t (6 + 8 t + t2)

(1 − t)7
y4

4!
+
t (24 + 58 t + 22 t2 + t3)

(1 − t)9
y5

5!
+ ... . (13)

Compare this with the different eq. (11). Now from eq. (9),

EGDS(y, t) = ex(t; y) − 1 =
1

1 − t
y +

1

(1 − t)3
y2

2!
+

1 + 3 t − t2

(1 − t)5
y3

3!
+

+
t + 17 t − 2 t2 − t3

(1 − t)7
y4

4!
+

1 + 80 t + 49 t2 − 27 t3 + 2 t4

(1 − t)9
y5

5!
+ ... . (14)

The coefficients of the row polynomials are given as signed triangle A290311. Like P · S2 produced the Euler2
triangle in example 2, here P · |S1| produces triangle A290311.
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4) S2[d, a]. S = (ea s, ed s − 1), generalized Stirling2 number triangles ([8], also with references). Here d ∈ N0,
a ∈ N0 and gcd(d, a) = 1, and for d = 1 one puts a = 0. Example 1 is the instance [d, a] = [1, 0], and we
consider here only d ≥ 2 (i.e., a 6= 0). Example 2 would appear as d = a = 1.

y(d; t;x) = x

(
1 − t

edx − 1

x

)
with the compositional inverse x(d; t; y). H(a;x) =

∫
dx eax =

1

a
eax, H(a; 0) =

1

a
. From eq. (9)

EGDS2(d, a; y, t) =
1

a

(
eax(d;t;y) − 1

)
. (15)

We consider two instances.

α) S = S2[2, 1] =A154537.

EGDS2(2, 1; y, t) = ex(2;t;y) − 1 =
1

1 − 2 t
y +

1 + 2 t

(1 − 2 t)3
y2

2!
+

1 + 16 t + 12 t2

(1 − 2 t)5
y3

3!

+
1 + 66 t + 284 t2 + 120 t3

(1 − 2 t)7
y4

4!
+

1 + 224 t + 2872 t2 + 5952 t3 + 1680 t4

(1 − 2 t)9
y5

5!
+ ... . (16)

The coefficients of the numerator polynomials are found in A290315.

β) S = S2[3, 1] =A282629.

EGDS2(3, 1; y, t) = ex(3;t;y) − 1 =
1

1 − 3 t
y +

1 + 3 t

(1 − 3 t)3
y2

2!
+

1 + 16 t + 12 t2

(1 − 3 t)5
y3

3!

+
1 + 66 t + 284 t2 + 120 t3

(1 − 3 t)7
y4

4!
+

1 + 224 t + 2872 t2 + 5952 t3 + 1680 t4

(1 − 3 t)9
y5

5!
+ ... . (17)

The coefficients of the numerator polynomials are found in A290316.

5) Ŝ1p[d, a]. S = ((1 − d s)−
a

d , − 1
d log(1 − d s), generalized signless Stirling1 number triangles (see [8], also with

references). Here d ∈ N0, a ∈ N0 and gcd(d, a) = 1, and for d = 1 one puts a = 0. The [d, a] = [1, 0] case has
been given for the signed Stirling1 numbers in the Bala article [1], and we consider here only d ≥ 2 (i.e., a 6= 0).

y(d; t;x) = x

(
1 − t

(
−
log(1 − d x)

d x

))
with the compositional inverse x(d; t; y). No confusion with above y and

x quantities with the same name should arise.

H(d, a;x) =

∫
dx (1 − d x)−

a

d = −
1

d − a
(1 − d x)

d−a

d , H(d, a; 0) = −
1

d − a
. From eq. (9)

EGDŜ1p(d, a; y, t) =
1

d − a

[
1 − (1 − d x(d; t; y))

d−a

a

]
. (18)

We consider two instances.

α) S = Ŝ1p[2, 1] =A028338.

EGDŜ1p(2, 1; y, t) = 1− (1− 2 x(2; t; y))1/2 =
1

1 − t
y +

1 + t

(1 − t)3
y2

2!
+

3 + 8 t + t2

(1 − t)5
y3

3!

+
15 + 71 t + 33 t2 + t3

(1 − t)7
y4

4!
+

105 + 744 t + 718 t2 + 112 t3 + t4

(1 − t)9
y5

5!
+ ... . (19)

The coefficients of the numerator polynomials are found in A288875. The first diagonal sequences of A028338 are
A000012, A000290(n+ 1), A024196(n+ 1), A024197(n+ 1), A024198(n+ 1).

β) S = Ŝ1p[3, 1] =A286718.

EGDŜ1p(3, 1; y, t) = (1 − (1− 3 x(3; t; y))2/3)/2 =
1

1 − t
y +

1 + 2 t

(1 − t)3
y2

2!
+

4 + 19 t + 4 t2

(1 − t)5
y3

3!

+
28 + 222 t + 147 t2 + 8 t3

(1 − t)7
y4

4!
+

280 + 3194 t + 4128 t2 + 887 t3 + 16 t4

(1 − t)9
y5

5!
+ ... . (20)
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The coefficients of the numerator polynomials are found in A290318. The first diagonal sequences of A286718 are
A000012, A000326(n+ 1), A024212(n+ 1), A024213(n+ 1).

Part B: Riordan triangles and their diagonals multiplied with Pascal diagonals

A Riordan triangle R (an infinite dimensional lower triangular (ordinary) convolution matrix; for practical

purpose a N × N matrix) is denoted by R = (G, F ) with o.g.f. G(x) =

∞∑

k=0

Gn x
n, where G(0) = G0 = 1

(w.l.o.g.), and F (x) = x F̂ (x) with o.g.f. F̂ (x) =

∞∑

k=0

F̂n x
n, where F̂ (0) = F̂0 6= 0. The column sequence

RCol(m) = {R(n,m)}∞n=0 (with m leading zeros) has o.g.f. GRCol(x,m) =

∞∑

n=m

R(n,m)xn, for m ∈ N0, given

by
GRCol(x,m) = G(x)F (x)m = G(x)xm F̂ (x)m . (21)

The row polynomials (called Riordan polynomials) are PR(n, x) =
∑n

m=0 R(n, m)xn. They have o.g.f.s

GPR(x, z) =

∞∑

n=0

PR(n, x) zn given by

GPS(x, z) = G(z)
1

1 − xF (z)
(22)

which is also called the o.g.f. of the R triangle.

The Riordan group has been introduced, in analogy to the Sheffer group [11] by Shapiro et al. [12]

There is no (ordinary) convolution property for Riordan polynomials similar to eq. (3). But P = (1, F ) is also
called associated to R = (g, f). Such matrices form a subgroup of the Riordan group.

The diagonal sequences are labeled by d ∈ N0, with d = 0 for the main diagonal. Their entries are

DR(d, m) = R(d+m, m), for m ∈ N0 . (23)

Their o.g.f. is

GDR(d, x) =

∞∑

m=0

DR(d, m)xm , (24)

Application of Lagrange’s theorem, like in the Lemma, part b) does not lead to the o.g.f.s of these diagonal
sequences directly. Instead one is led to consider the product of the diagonal entries with the corresponding ones

of Pascal’s Riordan triangle P =

(
1

1 − x
,

x

1 − x

)
, A007318. This belongs to the so called Bell subgroup of the

Riordan group of the type B = (G(x), xG(x)). Define

D̂(d, m) := P (d+m,m)R(d+m, m) =

(
d+m

m

)
D(d, m) . (25)

The corresponding o.g.f. is GD̂(d, t) =
∑

∞

m=0 D̂(d, m) tm Their logarithmic generating function (l.g.f. )

LGD̂R(y, t) is taken as

LGD̂R(y, t) =
∞∑

d=0

GD̂(d, t)
yd+1

d+ 1
. (26)

(The unconventional powers for this l.g.f. and the use of y instead of z will become clear later).

Applying now Lemma, part b) to y = y(t;x) = xψ(t;x) = x (1 − t F̂ (x)) = x − t F (x) with the Riordan

function F , introducing a parameter t, and taking H(x) =
∫
dxG(x), with the Riordan function G, we obtain,

with the compositional inverse x = x(t; y) of y = y(t;x), the following proposition.

Proposition 2:

LGD̂R(y, t) = H(x(t; y)) − H(0) =

[∫
dxG(x)

]∣∣∣∣
x=x(t;y)

−

[∫
dxG(x)

]∣∣∣∣
x=0

. (27)
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As in the Sheffer section one has first to compute the x = x(t; y), the Lagrange inversion of y = y(t;x). This is

the case H(x) = x in the Lemma, part b, with the chosen ψ = ψ(t;x) = 1− t F̂ (x). It belongs to the associated
Riordan case A = (1, F ) (A for the associated triangle to R). This yields the following corollary.

Corollary 2: Associated Riordan case

LGD̂A(y, t) = x(t; y) . (28)

This means that in the A = (1, F ) case the l.g.f. of the o.g.f.s of the sequences of the product of the entries of the
diagonals of A and the Pascal triangle P is just the compositional inverse of y = y(t;x) = x − t F (x).

Instead of the l.g.f. of the o.g.f.s of diagonal sequences of the triangle with entries D̂(d, m) one could as well take

the e.g.f. of the e.g.f.s of the diagonal sequences of the triangle with entries D̃(d, m) := (d +m)!D(d, m). This
leads to

Corollary 3: With the e.g.f.

ED̃(d, t) :=

∞∑

m=0

D̃(d, m)
tm

m!
=

∞∑

m=0

(d+m)!D(d, m)
tm

m!
, (29)

and the further e.g.f.

EED̃R(y, t) =
∞∑

d=0

ED̃(d, t)
yd+1

(d+ 1)!
(30)

one has

EED̃R(y, t) = H(x(t; y)) − H(0) =

[∫
dxG(x)

]∣∣∣∣
x=x(t;y)

−

[∫
dxG(x)

]∣∣∣∣
x=0

. (31)

Examples

1) A =

(
1,

x

1 − x

)
, the Pascal triangle variant given in A097805. The Lagrange inverse x = x(t; y) of

y = x

(
1 −

t

1 − x

)
turns out to be

x(t; y) =
1

1 − t
y+

2 t

(1 − t)3
y2

2
+

3 t (1 + t)

(1 − t)5
y3

3
+

4 t (1 + 3 t + t2)

(1 − t)7
y4

4
+

5 t (1 + 6 t + 6 t2 + t3)

(1 − t)9
y5

5
+ ... . (32)

See [3], Example 1.10.8.

This is a l.g.f. , therefore the coefficients of
yd+1

d+ 1
, for d ≥ 0, are the o.g.f. of the diagonal sequences of the triangle

[[1], [0, 1], [0, 2, 1], [0, 3, 6, 1], [0, 4, 18, 12, 1], [0, 5, 40, 60, 20, 1], [0, 6, 75, 200, 150, 30, 1], [0, 7, 126, 525, 700, 315, 42, 1], ...]
obtained by multiplying the entries of Pascal’s triangle and A =A097805. E.g., the fourth diagonal (d = 3)

[0, 4, 40, ...] has o.g.f. G(3, x) =
4 t (1 + 3 t + t2)

(1 − t)7
. The numerator polynomials divided by (d + 1) t, for d ≥ 1,

are found as row d polynomials of A001263 (Narayana triangle).

2) Generalized Pascal triangles.

R =

(
G(x),

x

1 − x

)
, and the Lagrange inverse x(t; y) is given in eq. (32). Now eq. (27) applies with H(x) =

∫
dxG(x).

Two instances:

α) R =

(
1

1 − x
,

x

1 − x

)
. This is the Pascal triangle A007318. Here H(x) = − log(1 − x), H(0) = 0, and one

obtains the l.g.f.

LGD̂R(y, t) = − log(1 − x(y; t)) =
1

1 − t
y +

1 + t

(1 − t)3
y2

2
+

1 + 4 t + t2

(1 − t)5
y3

3
+

+
1 + 9 t + 9 t2 + t3

(1 − t)7
y4

4
+

1 + 16 t + 36 t2 + 16 t3 + t4

(1 − t)9
y5

5
+ ... (33)

6

http://oeis.org/A097805
http://oeis.org/A097805
http://oeis.org/A001263
http://oeis.org/A007318


The numerator polynomials are the row polynomials of A008459, the square entries of Pascal’s triangle. The o.g.f.s

for the diagonal sequences of A008459 are given by GDR(d, x) =

[
yd+1

d+ 1

]
LGD̂R(y, t) for d ≥ 0. E.g., the fourth

diagonal sequence [1, 16, 100, ...] has o.g.f. GDR(3, x) =
1 + 9 t + 9 t2 + t3

(1 − x)7
.

β) R =

(
1

(1 − x)2
,

x

1 − x

)
. This is the Riordan triangle A135278. Here H(x) =

1

1 − x
, H(0) = 1, and one

obtains the l.g.f.

LGD̂R(y, t) =
1

1 − x(y; t)
− 1 =

1

1 − t
y +

2

(1 − t)3
y2

2
+

3 (1 + t)

(1 − t)5
y3

3
+

+
4 (1 + 3 t + t2)

(1 − t)7
y4

4
+

5 (1 + 6 t + 6 t2 + t3)

(1 − t)9
y5

5
+ ... (34)

The numerator polynomials are again the row polynomials of A008459 (Narayana triangle) multiplied here by d+1.
Therefore, the o.g.f.s for the diagonal sequences with entries A103371(n, k) = A135278(n, k)A007318(n, k) are

given by GDR(d, x) = (d + 1)

∑d
k=1 N(d, k)xk−1

(1 − x)2 d+1
for d ≥ 1, with N(d, k) =A008459(d, k), and for d = 0 the

o.g.f. is GDR(0, x) =
1

1 − x
.

2 Proofs

Part A

1. Proof of the Lemma: Lagrange theorem and inversion [4], p. 523. eq. (29), [13], p. 133.

Part a) is the standard theorem of Lagrange with the proof given in the references.

Part b): The first two equations of eq. (8) follow from part a) for a = 0, interchanging the rôle of x and y, and

using ϕ(x) =
1

ψ(x)
(See[4], pp. 524-525 for the case H(x) = x). The last eq. is then obvious with the definition

of [an]h(a) given there.

2. Proof of Proposition 1

From the Lemma, part b), one has, with y = y(t;x) = xψ(t;x) = x (1 − t f̂(x)), and H(x) =
∫
dx g(x), where

the Sheffer triangle is S = (g(x), x f̂(x)),

H(x(t; y)) − H(0) =

∞∑

n=1

yn

n!
(n− 1)! [an−1]

[
(1 − t f̂(a))−n g(a)

]
. (35)

The binomial theorem (1 − t f̂(a))−n =

∞∑

p=0

(
−n

p

)
(−t)p (f̂(a))p is applied. Then the binomial with negative

upper entry is transformed in one with non-negative entries, using the identity (see [5], p. 164, eq. (5.14))

(
−n

p

)
= (−1)p

(
p+ n− 1

p

)
. (36)

H(x(t; y)) − H(0) =

∞∑

n=1

yn

n!
(n− 1)!

∞∑

p=0

(
p+ n− 1

p

)
tp p! [an−1]

[
(f̂(a))p

p!
g(a)

]
. (37)

In order to obtain f(a) = a f̂(a) one uses [an−1]h(a) = [an−1+p](ap h(a)). Then the definition of the e.g.f. of the

sequence of column p of the Sheffer triangle is used:

∞∑

k=p (0)

S(k, p)
ak

k!
=

(f(a))p

p!
g(a) (One can start with p = 0
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because S(k, p) = 0 for 0 ≤ k < p.) Thus [am]

(
(f(a))p

p!
g(a)

)
= S(m, p)

1

m!
.

H(x(t; y)) − H(0) =

∞∑

n=1

yn

n!
(n− 1)!

∞∑

p=0

(
p+ n− 1

p

)
tp p!

1

(n− 1 + p)!
S(n− 1 + p, p)

=

∞∑

n=1

yn

n!

(
∞∑

p=0

tp S(n− 1 + p, p)

)
. (38)

But the o.g.f. of the diagonal sequences of S is GDS(n− 1, t) =
∑

∞

p=0 t
p S(n− 1 + p, p), for n ≥ 1, and because

we take d = n− 1 to label the diagonals, we get

H(x(t; y)) − H(0) =

∞∑

d=0

yd+1

(d+ 1)!
GDS(d, t) =: EGDS(y, t) (39)

Part B 3. Proof of Proposition 2

From the Lemma, part b), one has, with y = y(t;x) = xψ(t;x) = x (1 − t F̂ (x)), and H(x) =
∫
dxG(x), where

the Riordan triangle is R = (G(x), x F̂ (x))

H(x(t; y)) − H(0) =

∞∑

n=1

yn

n!
(n− 1)! [an−1]

[
(1 − t F̂ (a))−nG(a)

]
. (40)

Using the binomial theorem and the binomial identity eq. (36) one finds

H(x(t; y)) − H(0) =

∞∑

n=1

yn

n!
(n− 1)!

∞∑

p=0

(
p+ n− 1

p

)
tp [an−1]

[
(F̂ (a))pG(a)

]
. (41)

In order to obtain F (a) = a F̂ (a) one uses [an−1]h(a) = [an−1+p](ap h(a)). Then the definition of the o.g.f. of the

sequence of column labeled p of triangle R is used:

∞∑

k=p (0)

R(k, p) ak = (F (a))pG(a). Thus [am] ((F (a))pG(a)) =

R(m, p).

H(x(t; y)) − H(0) =

∞∑

n=1

yn

n!
(n− 1)!

∞∑

p=0

(
p+ n− 1

p

)
tpR(n− 1 + p, p)

=

∞∑

n=1

yn

n!

∞∑

p=0

tp

p!
(p+ n− 1)! R(n− 1 + p, p) . (42)

At this stage the Corollary 3 has been proved, if one uses n − 1 = d (and p → m). But we prefer to use the
binomial coefficient to multiply the diagonal R entries, i.e., we use the first equation. With n−1 = d this becomes

H(x(t; y)) − H(0) =

∞∑

d=0

yd+1

d+ 1

(
∞∑

p=0

(
d+ p

p

)
R(d+ p, p) tp

)
. (43)

This is the the l.g.f. eq. (26) of the o.g.f.s GD̂(d, t) of the product of the diagonal entries in Pascal’s triangle and the

ones of the Riordan triangle, called D̂(dm) in eq. (25).
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