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On a Certain Family of Sidi Polynomials

Wolfdieter Lang 1

Abstract

A family of a Sidi polynomials system {PSN (n, x)}, for integer N , and their coefficient number
triangles {TSN(n, m)}, are studied. For all N the row sums of the triangles are n!. The exponential
generating functions of the triangles are shown to involve derivatives of the Lambert W -function.

1 Introduction

A special family of Sidi’s one variable polynomial systems [3] which originally depended on three
integers, is here reduced to only one integer N and studied in detail.
This family of polynomial systems is denoted by {PSN (n, x)}n≥ 0.The corresponding number triangles
TSN and their exponential generating functions (e.g.f.) ETSN are computed. For N = 0 these e.g.f.

s involve the derivative of Lambert’s W -function. For non-vanishing N the derivative of the N -fold
convolution of W (−x)/(−x) = exp(−W (−x)) enters.
The Jabotinsky type Sheffer polynomials (1, −W (−x)) are essential for evaluating the case of non-
vanishing N . They are identified with special Abel polynomials.
A salient feature of this N−family of Sidi polynomials is the N independent row sum n! for row n of
each triangle TSN .
The interest in this work started with the N = 0 triangle OEIS [1] A075513 after a question by Harlan
J. Brothers for a proof of the row sums.

2 Sidi N-polynomials and number triangles

The general Sidi polynomials [3], Theorem 4.2., p. 862, are for integers k, n, m, with k ≥ 0 and m ≥ 0

Dk,n,m(z) =

k
∑

j=0

(−1)j
(

k

j

)

(n + j)m zn+j−1. (1)

They can also be computed as given in [3], eq. (4.11) , p. 862.

Dk,n,m(z) =

(

d

dz
z

)m

(zn−1 (1− z)k) . (2)

This can be rewritten, using the Euler derivative Ez := z d
dz as

Dk,n,m(z) =
1

z
Em

z (zn (1− z)k) . (3)

This shows immediately eq. (1) using the binomial sum for (1− z)k and the eigen-equation Em
z zj = jm zj.
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Here we consider the special N−family of polynomials {PSN (n, x)} with integer N , namely

PSN (n, x) :=
n
∑

k=0

(−1)n−k

(

n

k

)

(k + N + 1)n xk =
(−1)n

xN
Dn,N+1,n(x) . (4)

From eq. (3) this can be written as

PSN (n, x) =
1

xN+1
En

x (x
N+1 (x − 1)n) . (5)

A simple computation shows that the instance N = 0 can also be obtained by

PS0(n, x) =
1

(n+ 1)x
En+1

x (x − 1)n+1 . (6)

The number triangles TSN of the coefficients of PSN are

TSN(n, k) = (−1)n−k

(

n

k

)

(k + N + 1)n , for n ≥ 0, and k = 0, 1, ..., n . (7)

For n < k one sets TSN (n, k) = 0,

The e.g.f.s of the columns of these triangles, i.e., EN (k, x) :=
∑∞

n=k TSN (n, k)xn (one can start with
n = 0), are

Proposition 1:

EN (k, x) = e−(k+N+1)x ((k +N + 1)x)k

k!
for k ≥ 0. (8)

Proof:

EN (k, x) = (−1)k g(k, −z)
∣

∣

∣

z=(k+N+1) x
, with g(k, x) :=

∑∞
n= k

(n
k

)

xn/n! = ex xk/k!.

This follows from the fact that the e.g.f. of the kth column (with leading zeros) of the Pascal triangle,
OEIS [1] A007318, can be obtained from the ordinary generating function Gk(x) = xk/(1 − x)k by
an inverse Laplace transformation, namely L[−1](Gk(1/p)/p) = L[−1](1/(p − 1)k+1) = et tk/k!. This
also shows that the Pascal triangle, the Riordan triangle of the Bell type (1/(1 − x), x/(1 − x))) is
also the Sheffer triangle (sometimes called exponential Riordan triangle) of the Appell type (exp(x), x).

Proposition 2: The e.g.f. ETSN (x, z) of the row polynomials {PSN (n, x)}, i.e., the e.g.f. of triangle
TSN , is

ETSN (x, z) :=

∞
∑

n=0

PN (n, x)
zn

n!
=

∞
∑

k=0

xk EN (k, x)

= e−(N+1) z
∞
∑

k=0

((k + N + 1)x z e−z)k/k! . (9)

Proof: This follows from PN (n, x) =
∑n

k=0 TSN (n, k)xk, an interchange of the summation variables n
and k, and the definition of EN (k, x) with the result eq. (8) .

Because the instance N = 0 will turn out to be special we treat this case first. See A075513, but there
the triangle has offset 1. (A-numbers will be given henceforth without the OEIS reference.)

Proposition 3:
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ETS0(x, z) = e−z
∞
∑

k=0

(k + 1)k
yk

k!

∣

∣

∣

y=x z e−z
= e−z d

dy
(−W (−y))

∣

∣

∣

y= x z e−z
=

e−(z+W (−x z e−z))

1 + W (−x z e−z)
, (10)

where W (y) is the principal branch of the Lambert W -function, (see,e.g., [8], [5]) defined by the identity
W (y) exp(W (y)) = y, with derivative d

dyW (y) = exp(−W (y))/(1 + W (y)).

The proof uses the following e.g.f. of {kk−1}k>=1 =A000169.

Lemma 1:

−W (−y) =

∞
∑

k=1

kk−1 y
k

k!
. (11)

Proof:

The Lagrange inverse of g(x) = x e−x is g[−1](y) =
∑∞

n=1 gn y
n/n! with

gn = (dn−1/dtn−1)(1/exp(−t))n
∣

∣

∣

t=0
= nn−1. See A000169, and Stanley [4]. But this composi-

tional inverse of g(x) is −W (−y) because, from the definition of W , W (−y) exp(W (−y)) = −y, or
(−W (−y)) exp(−(−W (−y)) = y.

For a proof that −W (−y) is the compositional inverse of x exp(−x) one can alternatively use the rule for
the derivative of the compositional inverse −W (−y) of x e−x and compare this with the known derivative
of −W (−y) (see above).

Proof of eq. (10) :

The first step is eq. (9) for N = 0. From Lemma 1 follows the second step, after a change of the summa-

tion variable k → k + 1, d
dy (−W (−y)) =

∑∞
n=0 (k + 1)k yk

k! . The third step uses the above given result

for d
dy W (y) for y → −y.

The result of eq. (9) for non-vanishing integer N is, after evaluation of the sum:

Theorem:

For N ∈ Z \ {0}:

ETSN (x, z) = e−(N+1) z 1

N

[

d

dy

(

W (−y)

(−y)

)N
]
∣

∣

∣

∣

∣

y= x z e−z

= e−(N+1) z

[

e(N+1) (−W (−y))

1 − (−W (−y))

]
∣

∣

∣

∣

∣

y=x z e−z

.

(12)
For the proof we need the following Proposition for the exponential (sometimes called binomial) convo-
lution of W (−y)/(−y) = e−W (−y) (this identity follows from the definition of W (x) with x → −y).

Proposition 4:

a) The e.g.f. of (k + 1)k−1 =A000272 (k + 1), for k ≥ 0, is W (−y)/(−y), i.e.,

e−W (−y) =
W (−y)

(−y)
=

∞
∑

k=0

(k + 1)k−1 y
k

k!
. (13)

b) The special Sheffer triangle (or infinite matrix with upper diagonal part vanishing) of the Jabotinsky

type (1, −W (−x)) has row polynomials

JW (n, x) :=

n
∑

m=0

J(n, m)xm with e.g .f . EJW (x, z) = e−xW (−z) . (14)

c) The a-family of Abel polynomial systems A(a;n, x) := x (x − an)n−1, for n ≥ 0 and a ∈ Z, [[2],
[6], [9]] are Sheffer polynomials of the Jabotinsky type (1, f [−1](a; y)), with the compositional inverse
f [−1](a; y) of f(a; x) = x eax. Hence the JW (n, x) polynomial is identified as the member A(−1;n, x)
of this Abel family.
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d) The e.g.f. of (W (−y)/(−y))N = exp(−N W (−y)) is defined by
∑∞

n=0 cN (n) yn/n!, and cN (n) is a
polynomial in N of degree n (with 00 := 1), but later used only for integer N 6= 0), i.e.,

cN (n) =
n
∑

m=0

a(n, m)Nm, for n ≥ 0, (15)

where the number triangle {a(n,m)} is the Jabotinsky triangle {J(n, m)}, given by the unsigned triangle
|A137452| . Hence

cN (n) = JW (n, N). (16)

e) The triangle entries a(n, m) = J(n, m) are

a(0, 0) = 1; a(n, 0) = 0, and a(n, m) =

(

n− 1

m− 1

)

nn−m, for n ≥ 1 and m = 1, 2, ..., n . (17)

f) The explicit form of c(N, n) is

c(N, 0) = 1, and c(N, n) = N (n+N)n−1, for n ≥ 1 . (18)

This shows that c(N, n) = A232006(n+N, N) for N ≥ 1, and n ≥ 0.

g) Faà di Bruno’s formula [7] for cN (n):
cN (0) = 1, and for n ≥ 1, with partitions of n of m parts, written as n =

∑n
j=1 j ej and m =

∑n
j=1 ej.

(ej is the non-negative exponent of part j, however, j0 means that part j is absent) one obtains:

cN (n) =
dn

dyn
eN (−W (y))

∣

∣

∣

y=0
= n!

n
∑

m=1

Nm
∑

e1 e2, ..., en

n
∏

j=1

(

jj−1

j!

)ej 1

ej !
. (19)

Proof

a) The first equation follows from the definition of W (x = −y). The second one follows from Lemma 1

after a shift in the summation index.

b) This is a known result for the e.g.f. of general Sheffer (g(x), f(x)) polynomials with g(0) = 1 and
f(0) = 0 (see, e.g., the Sheffer part in the W. L. link ‘Sheffer a- and z-sequence’ in A006232, with details
and references). Here g(x) = 1 and f(x) = −W (−x).

c) That the Abel polynomials are Sheffer polynomials of the Jabotinsky type is proved in Roman [2] (in
a notation where f is the present f [−1]). Here we give a proof using the known recurrence relation for
Jabotinsky polynomials J , (also given in [2], Corollary 3.7.2., p. 50) namely

J(n, x) = x

[

1
d
dt(f

[−1](t))

]
∣

∣

∣

∣

∣

t= d/dx

J(n− 1, x), for n ≥ 1, and J(0, x) = 1. (20)

Hence

A(−1;n, x) = x

[

et

1 − t

]

∣

∣

∣

∣

∣

t= d/dx

A(−1; n− 1, x), for n ≥ 1, and A(−1; 0, x) = 1 (21)

will be proved.
This uses the expansion (nk is a falling factorial)

et

1 − t
=

∞
∑

n=0

a(n)
tn

n!
, with a(n) =

n
∑

k=0

nk = n!
n
∑

k=0

1

k!
, (22)

The proof of the a(n) is done by expanding the l.h.s. and picking coefficients of tn/n!, for n ≥ 0 (using
induction over n).
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The recurrence relation is a(n + 1) = (n + 1) a(n) + 1, for n ≥ 0, and a(0) = 1. For {a(n)}n=0 see
A000522.
In addition one needs higher derivatives of A(−1;n − 1, x).

Lemma 2
(

d

dx

)k

A(−1;n − 1, x) = (n − 1)k (x + k) (x + n − 1)n−(k+2), for k ≥ 0 and n ≥ 1. (23)

Proof of the Lemma
By induction over k for fixed n. The case k = 0 is satisfied because (n − 1)0 := 1. The induction step
for ( d

dx)
k+1A(−1;n− 1, x) uses (n − 1)k (n − (k + 1)) = (n − 1) k+1 .

Continuing with the proof of part c) we start with the binomial expansion A(−1;n, x) = x ((x + n −
1) + 1)n−1 = x

∑n−1
j=0

(n−1
j

)

(x+n− 1)j, and eqs. (21) and (22). After division by x (x 6= 0) one wants
to prove, for fixed n ≥ 1,

n−1
∑

j=0

(

n− 1

j

)

(x + n − 1)j
!
=

n−1
∑

k=0

a(k)

k!

dk

dxk
A(−1;n − 1, x), (24)

where the k-sum is cut off at the degree of A(−1;n−1, x). Applying Lemma 2 leads to the r.h.s. (RHS)

RHS =

n−1
∑

k=0

a(k)

k!
(n− 1)k (x + k) (x + n − 1)n− (k+2) . (25)

In order to compare powers of x + n − 1 on both sides of eq. (24) , one rewrites x + k = (x + n − 1)+
(k − (n − 1)) for each term, except for k = n − 1. This last term needs no rewriting, it is a(n−1). The
first term, k = 0, leads to a rewritten first part a(0) (x + n − 1)n−1, and an addition to the rewritten
first part of term k + 1, i.e., a(0)(−(n − 1)) (x + n − 1)n−2. This k = 0 term is the only one consisting
of only one rewritten part.
For k = 0, 1, ..., n−2 the (x independent) second part of the replacement leads to (a(k)/k!) (n−1)k (k −
(n − 1)) (x + n − 1)n−k−2, which adds to the first part of the rewritten term for k+1 that will produce
this power.
This means that each power (x + n − 1)n−k−2, for k ∈ {1, 2, ..., n − 1 } consist of two terms: the
first one from the first part of the rewritten k term and the second one from the second part of the
rewritten k − 1 term. The single rewritten k = 0 term is a(0) (x + n − 1)n−1, and it coincides with
the j = n − 1 term of the l.h.s. (LHS) of eq. (24) because a(0) = 1. The last term k = n − 1
receives the additional second part of the k = n − 2 term, i.e., a(n − 2) (n − 1) (−1). This results in
a(n− 1) − (n − 1) a(n − 2) = 1 (by the recurrence), coinciding with the j = 0 term of the LHS.
Thus the coefficient of (x + n − 1)n−k−2, for k = {1, 2, ..., n − 1 }, can be compared on both sides of
eq. (24) ,

(

n− 1

n− k − 2

)

=
(n− 1)k+1

(k + 1)!

!
=

a(k + 1)

(k + 1)!
(n − 1)k+1 −

a(k)

k!
(n − 1)k (n − 1 − k) . (26)

This can be rewritten with the relation between (n−1)k and (n−1)k+1 used above in the proof of Lemma

2 as

RHS =
(n− 1)k

(k + 1)!
(n − k − 1) (a(k + 1) − (k + 1) a(k)), (27)

which equals the LHS because of the recurrence a(k+1) − (k+1) a(k) = 1, and again using the falling
factorial relation. This ends the proof of part c).

d) The proof that cN (n) = JW (n, x)|x=N is shown for the corresponding e.g.f.s. By definition the
e.g.f. of {cN (n)}n>=0 is exp(−N W (−y)). From b) the e.g.f. of the row polynomials {JW (n, x)}n≥ 0 is
EJW (x, y) = exp(−xW (−y) (expansion in y). For x = N the claim follows.
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e) This follows from JW (n, x) = A(−1;x, n) from c), and the trivial computation of x (x + n)n−1 by
the binomial expansion, and a shift of the summation index, The case of the x0 coefficient is separated,
giving a(0, 0) = 1.

f) for N 6= 0 and n ≥ 1, N (n + N)n−1 = nn (N/n) (1 + (N/n))n−1 = nn
∑n−1

m=0

(

n−1
m

)

(N/n)m+1 =

nn
∑n

m=1

(n−1
m−1

)

(N/n)m =
∑n

m=1

(n−1
m−1

)

nn−mNm =
∑n

m=1 a(n, m)Nm, with a(n, m) from part e),
hence this equals c(N,n), because the m = 0 term a(n, 0) = 0 for n ≥ 1.

g) The Faà di Bruno formula is for dn

dyn f(g(y)), and here f(x)= exp(N x) and g(y) = −W (−y).

Because for cN (n) the formula is evaluated at y = 0, one needs dm

dxm f(x)
∣

∣

x= g(0)=0
= Nm and

dj

dyj
g(y)

∣

∣

y=0
= jj−1 from eq. (11) . The multinomials n!/

∏n
j=1 j!ej ej ! appearing in this formula are

called M3 = M3(~e(n, m)), with ~e(n, m) := {e1, e2, ..., en}, and the given restrictions on the non-
negative exponents of ~e(n, m) These multinomials are shown in A036040 (see the Abramowitz-Stegun

link there).
This shows that a(n, m) in eq. (15) for cN (n) equals the sum of M3-partition polynomials (ParPolM3)

over the p(n,m) =A008284(n, m) partitions of n with m parts:
∑p(n,m)

k=1 ParPolM3(n,m, k, {xj =
jj−1}j=1..n).
Example: n = 3, the partitions for m = 1, 2, 3 are 31, 11 21, 13, respectively.
cN (3) = 3! (N1 32/3!+N2 (10/1!) (21/2!)+N3 (10/1!)3/3!) = 9N + 6N2 + N3. Compare this with row
n = 3 of |A137452|: [0, 9, 6, 1].

Proof of the Theorem

The step from the last equation of eq. (9) to the first equation of eq. (12) , with y = x z exp(−z), is
proved with the help of Proposition 4, part d) and the explicit form of a(n, m) from part e).
The e.g.f.

∑∞
k=0(k + N + 1)k yk/k! is proved to be (1/N) d/dy (1 +

∑∞
k=1 cN (k) yk/k!), where cN (0) = 1

was used. This means, after comparing powers of y,

(k + N + 1)k
!
=

1

N
cN (k + 1), for k ≥ 0 . (28)

Because a(k + 1, 0) = 0 the r.h.s. becomes, with eq. (15) and an index shift in m,
∑k

m=0 a(k+1, m+1)Nm. From eq. (17) this becomes
∑k

m=0

( k
m

)

(k+1)k−m Nm, but this is the binomial
expansion of ((k + 1) + N)k,
For the proof of the second equation of the Theorem, eq. (12) , one uses the replacement (W (−y)/(−y))N

by exp(N (−W (−x))), and with d/dy (−W (−y)) = exp(−W (−y))/(1 − (−W (−y)), one obtains

1

N

d

dy
eN (−W (−y)) = eN (−W (−y)) e−W (−y)

1 − (−W (−y))
=

e(N+1) (−W (−y))

1 − (−W (−y))
. (29)

We close with the result that for each integer N the row sum of the triangle TSN is n!.

Proposition 5
n
∑

k=0

TN (n, k) = PSN (n, 1) = n!, for N ∈ Z. (30)

Proof

We show that the e.g.f. of {PS(n, 1)}n>=0, i.e., ETSN (1, z) from eq. (10) and eq. (12) becomes 1/(1− z),
the e.g.f. of {n!}n≥ 0.
For N = 0 one obtains for eq. (10) from −W (−y)|y= z exp(−z) = z (compositional inverse relation, see
the proof of Lemma 1)

ETS0(1, z) = e−z ez

1 − z
=

1

1 − z
. (31)
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For integer N 6= 0 one uses in eq. (12) the previously mentioned compositionl inverse rule for −W (−y)
with y = z exp(−z)

ETSN (1, z) = e−(N+1) z eN z ez

1 − z
=

1

1 − z
. (32)

The dependence on N 6= 0 dropped out.
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