On a Certain Family of Sidi Polynomials

Wolfdieter Lang ${ }^{1}$

Abstract

A family of a Sidi polynomials system $\left\{P S_{N}(n, x)\right\}$, for integer N, and their coefficient number triangles $\left\{T S_{N}(n, m)\right\}$, are studied. For all N the row sums of the triangles are $n!$. The exponential generating functions of the triangles are shown to involve derivatives of the Lambert W-function.

1 Introduction

A special family of Sidi's one variable polynomial systems [3] which originally depended on three integers, is here reduced to only one integer N and studied in detail.
This family of polynomial systems is denoted by $\left\{P S_{N}(n, x)\right\}_{n \geq 0}$. The corresponding number triangles $T S_{N}$ and their exponential generating functions (e.g.f.) $E T S_{N}$ are computed. For $N=0$ these e.g.f. s involve the derivative of Lambert's W-function. For non-vanishing N the derivative of the N-fold convolution of $W(-x) /(-x)=\exp (-W(-x))$ enters.
The Jabotinsky type Sheffer polynomials $(1,-W(-x))$ are essential for evaluating the case of nonvanishing N. They are identified with special Abel polynomials.
A salient feature of this N-family of Sidi polynomials is the N independent row sum n ! for row n of each triangle $T S_{N}$.
The interest in this work started with the $N=0$ triangle OEIS [1] A075513 after a question by Harlan J. Brothers for a proof of the row sums.

2 Sidi N-polynomials and number triangles

The general Sidi polynomials [3], Theorem 4.2., p. 862, are for integers k, n, m, with $k \geq 0$ and $m \geq 0$

$$
\begin{equation*}
D_{k, n, m}(z)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(n+j)^{m} z^{n+j-1} . \tag{1}
\end{equation*}
$$

They can also be computed as given in [3], eq. (4.11), p. 862.

$$
\begin{equation*}
D_{k, n, m}(z)=\left(\frac{d}{d z} z\right)^{m}\left(z^{n-1}(1-z)^{k}\right) \tag{2}
\end{equation*}
$$

This can be rewritten, using the Euler derivative $E_{z}:=z \frac{d}{d z}$ as

$$
\begin{equation*}
D_{k, n, m}(z)=\frac{1}{z} E_{z}^{m}\left(z^{n}(1-z)^{k}\right) . \tag{3}
\end{equation*}
$$

This shows immediately eq. (1) using the binomial sum for $(1-z)^{k}$ and the eigen-equation $E_{z}^{m} z^{j}=j^{m} z^{j}$.

[^0]Here we consider the special N-family of polynomials $\left\{P S_{N}(n, x)\right\}$ with integer N, namely

$$
\begin{equation*}
P S_{N}(n, x):=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(k+N+1)^{n} x^{k}=\frac{(-1)^{n}}{x^{N}} D_{n, N+1, n}(x) . \tag{4}
\end{equation*}
$$

From eq. (3) this can be written as

$$
\begin{equation*}
P S_{N}(n, x)=\frac{1}{x^{N+1}} E_{x}^{n}\left(x^{N+1}(x-1)^{n}\right) . \tag{5}
\end{equation*}
$$

A simple computation shows that the instance $N=0$ can also be obtained by

$$
\begin{equation*}
P S_{0}(n, x)=\frac{1}{(n+1) x} E_{x}^{n+1}(x-1)^{n+1} \tag{6}
\end{equation*}
$$

The number triangles $T S_{N}$ of the coefficients of $P S_{N}$ are

$$
\begin{equation*}
T S_{N}(n, k)=(-1)^{n-k}\binom{n}{k}(k+N+1)^{n}, \text { for } n \geq 0, \text { and } k=0,1, \ldots, n \tag{7}
\end{equation*}
$$

For $n<k$ one sets $T S_{N}(n, k)=0$,
The e.g.f.s of the columns of these triangles, i.e., $E_{N}(k, x):=\sum_{n=k}^{\infty} T S_{N}(n, k) x^{n}$ (one can start with $n=0$), are

Proposition 1:

$$
\begin{equation*}
E_{N}(k, x)=e^{-(k+N+1) x} \frac{((k+N+1) x)^{k}}{k!} \text { for } k \geq 0 . \tag{8}
\end{equation*}
$$

Proof:

$E_{N}(k, x)=\left.(-1)^{k} g(k,-z)\right|_{z=(k+N+1) x}$, with $g(k, x):=\sum_{n=k}^{\infty}\binom{n}{k} x^{n} / n!=e^{x} x^{k} / k!$.
This follows from the fact that the e.g.f. of the k th column (with leading zeros) of the Pascal triangle, OEIS [1] A007318, can be obtained from the ordinary generating function $G_{k}(x)=x^{k} /(1-x)^{k}$ by an inverse Laplace transformation, namely $\mathcal{L}^{[-1]}\left(G_{k}(1 / p) / p\right)=\mathcal{L}^{[-1]}\left(1 /(p-1)^{k+1}\right)=e^{t} t^{k} / k!$. This also shows that the Pascal triangle, the Riordan triangle of the Bell type $(1 /(1-x), x /(1-x)))$ is also the Sheffer triangle (sometimes called exponential Riordan triangle) of the Appell type $(\exp (x), x)$.

Proposition 2: The e.g.f. $E T S_{N}(x, z)$ of the row polynomials $\left\{P S_{N}(n, x)\right\}$, i.e., the e.g.f. of triangle $T S_{N}$, is

$$
\begin{align*}
\operatorname{ETS}_{N}(x, z) & :=\sum_{n=0}^{\infty} P_{N}(n, x) \frac{z^{n}}{n!}=\sum_{k=0}^{\infty} x^{k} E_{N}(k, x) \\
& =e^{-(N+1) z} \sum_{k=0}^{\infty}\left((k+N+1) x z e^{-z}\right)^{k} / k! \tag{9}
\end{align*}
$$

Proof: This follows from $P_{N}(n, x)=\sum_{k=0}^{n} T S_{N}(n, k) x^{k}$, an interchange of the summation variables n and k, and the definition of $E_{N}(k, x)$ with the result eq. (8).
Because the instance $N=0$ will turn out to be special we treat this case first. See A075513, but there the triangle has offset 1. (A-numbers will be given henceforth without the OEIS reference.)

Proposition 3:

$$
\begin{equation*}
E T S_{0}(x, z)=\left.e^{-z} \sum_{k=0}^{\infty}(k+1)^{k} \frac{y^{k}}{k!}\right|_{y=x z e^{-z}}=\left.e^{-z} \frac{d}{d y}(-W(-y))\right|_{y=x z e^{-z}}=\frac{e^{-\left(z+W\left(-x z e^{-z}\right)\right)}}{1+W\left(-x z e^{-z}\right)} \tag{10}
\end{equation*}
$$

where $W(y)$ is the principal branch of the Lambert W-function, (see, e.g., [8], [5]) defined by the identity $W(y) \exp (W(y))=y$, with derivative $\frac{d}{d y} W(y)=\exp (-W(y)) /(1+W(y))$.
The proof uses the following e.g.f. of $\left\{k^{k-1}\right\}_{k>=1}=\underline{\text { A000169 }}$.

Lemma 1:

$$
\begin{equation*}
-W(-y)=\sum_{k=1}^{\infty} k^{k-1} \frac{y^{k}}{k!} \tag{11}
\end{equation*}
$$

Proof:
The Lagrange inverse of $g(x)=x e^{-x}$ is $g^{[-1]}(y)=\sum_{n=1}^{\infty} g_{n} y^{n} / n$! with $g_{n}=\left.\left(d^{n-1} / d t^{n-1}\right)(1 / \exp (-t))^{n}\right|_{t=0}=n^{n-1}$. See A000169, and Stanley [4]. But this compositional inverse of $g(x)$ is $-W(-y)$ because, from the definition of $W, W(-y) \exp (W(-y))=-y$, or $(-W(-y)) \exp (-(-W(-y))=y$.
For a proof that $-W(-y)$ is the compositional inverse of $x \exp (-x)$ one can alternatively use the rule for the derivative of the compositional inverse $-W(-y)$ of $x e^{-x}$ and compare this with the known derivative of $-W(-y)$ (see above).

Proof of eq. (10) :

The first step is eq. (9) for $N=0$. From Lemma 1 follows the second step, after a change of the summation variable $k \rightarrow k+1, \frac{d}{d y}(-W(-y))=\sum_{n=0}^{\infty}(k+1)^{k} \frac{y^{k}}{k!}$. The third step uses the above given result for $\frac{d}{d y} W(y)$ for $y \rightarrow-y$.

The result of eq. (9) for non-vanishing integer N is, after evaluation of the sum:

Theorem:

For $N \in \mathbb{Z} \backslash\{0\}$:

$$
\begin{equation*}
E T S_{N}(x, z)=\left.e^{-(N+1) z} \frac{1}{N}\left[\frac{d}{d y}\left(\frac{W(-y)}{(-y)}\right)^{N}\right]\right|_{y=x z e^{-z}}=\left.e^{-(N+1) z}\left[\frac{e^{(N+1)(-W(-y))}}{1-(-W(-y))}\right]\right|_{y=x z e^{-z}} \tag{12}
\end{equation*}
$$

For the proof we need the following Proposition for the exponential (sometimes called binomial) convolution of $W(-y) /(-y)=e^{-W(-y)}$ (this identity follows from the definition of $W(x)$ with $\left.x \rightarrow-y\right)$.

Proposition 4:

a) The e.g.f. of $(k+1)^{k-1}=\underline{\text { A } 000272}(k+1)$, for $k \geq 0$, is $W(-y) /(-y)$, i.e.,

$$
\begin{equation*}
e^{-W(-y)}=\frac{W(-y)}{(-y)}=\sum_{k=0}^{\infty}(k+1)^{k-1} \frac{y^{k}}{k!} \tag{13}
\end{equation*}
$$

b) The special Sheffer triangle (or infinite matrix with upper diagonal part vanishing) of the Jabotinsky type $(1,-W(-x))$ has row polynomials

$$
\begin{equation*}
J W(n, x):=\sum_{m=0}^{n} J(n, m) x^{m} \text { with e.g.f. EJW }(x, z)=e^{-x W(-z)} \tag{14}
\end{equation*}
$$

c) The a-family of Abel polynomial systems $A(a ; n, x):=x(x-a n)^{n-1}$, for $n \geq 0$ and $a \in \mathbb{Z}$, [[2], [6], [9]] are Sheffer polynomials of the Jabotinsky type ($1, f^{[-1]}(a ; y)$), with the compositional inverse $f^{[-1]}(a ; y)$ of $f(a ; x)=x e^{a x}$. Hence the $J W(n, x)$ polynomial is identified as the member $A(-1 ; n, x)$ of this Abel family.
d) The e.g.f. of $(W(-y) /(-y))^{N}=\exp (-N W(-y))$ is defined by $\sum_{n=0}^{\infty} c_{N}(n) y^{n} / n$!, and $c_{N}(n)$ is a polynomial in N of degree n (with $0^{0}:=1$), but later used only for integer $N \neq 0$), i.e.,

$$
\begin{equation*}
c_{N}(n)=\sum_{m=0}^{n} a(n, m) N^{m}, \text { for } n \geq 0 \tag{15}
\end{equation*}
$$

where the number triangle $\{a(n, m)\}$ is the Jabotinsky triangle $\{J(n, m)\}$, given by the unsigned triangle |A137452|. Hence

$$
\begin{equation*}
c_{N}(n)=J W(n, N) \tag{16}
\end{equation*}
$$

e) The triangle entries $a(n, m)=J(n, m)$ are

$$
\begin{equation*}
a(0,0)=1 ; a(n, 0)=0, \text { and } a(n, m)=\binom{n-1}{m-1} n^{n-m}, \text { for } n \geq 1 \text { and } m=1,2, \ldots, n \tag{17}
\end{equation*}
$$

f) The explicit form of $c(N, n)$ is

$$
\begin{equation*}
c(N, 0)=1, \text { and } c(N, n)=N(n+N)^{n-1}, \text { for } n \geq 1 \tag{18}
\end{equation*}
$$

This shows that $c(N, n)=\underline{A 232006}(n+N, N)$ for $N \geq 1$, and $n \geq 0$.
g) Faà di Bruno's formula [7] for $c_{N}(n)$:
$c_{N}(0)=1$, and for $n \geq 1$, with partitions of n of m parts, written as $n=\sum_{j=1}^{n} j e_{j}$ and $m=\sum_{j=1}^{n} e_{j}$. (e_{j} is the non-negative exponent of part j, however, j^{0} means that part j is absent) one obtains:

$$
\begin{equation*}
c_{N}(n)=\left.\frac{d^{n}}{d y^{n}} e^{N(-W(y))}\right|_{y=0}=n!\sum_{m=1}^{n} N^{m} \sum_{e_{1} e_{2}, \ldots, e_{n}} \prod_{j=1}^{n}\left(\frac{j^{j-1}}{j!}\right)^{e_{j}} \frac{1}{e_{j}!} \tag{19}
\end{equation*}
$$

Proof

a) The first equation follows from the definition of $W(x=-y)$. The second one follows from Lemma 1 after a shift in the summation index.
b) This is a known result for the e.g.f. of general Sheffer $(g(x), f(x))$ polynomials with $g(0)=1$ and $f(0)=0$ (see, e.g., the Sheffer part in the W. L. link 'Sheffer a- and z-sequence' in A006232, with details and references). Here $g(x)=1$ and $f(x)=-W(-x)$.
c) That the Abel polynomials are Sheffer polynomials of the Jabotinsky type is proved in Roman [2] (in a notation where f is the present $f^{[-1]}$). Here we give a proof using the known recurrence relation for Jabotinsky polynomials J, (also given in [2], Corollary 3.7.2., p. 50) namely

$$
\begin{equation*}
J(n, x)=\left.x\left[\frac{1}{\frac{d}{d t}\left(f^{[-1]}(t)\right)}\right]\right|_{t=d / d x} J(n-1, x), \text { for } n \geq 1, \text { and } J(0, x)=1 \tag{20}
\end{equation*}
$$

Hence

$$
\begin{equation*}
A(-1 ; n, x)=\left.x\left[\frac{e^{t}}{1-t}\right]\right|_{t=d / d x} A(-1 ; n-1, x), \text { for } n \geq 1, \text { and } A(-1 ; 0, x)=1 \tag{21}
\end{equation*}
$$

will be proved.
This uses the expansion ($n \underline{\underline{k}}$ is a falling factorial)

$$
\begin{equation*}
\frac{e^{t}}{1-t}=\sum_{n=0}^{\infty} a(n) \frac{t^{n}}{n!}, \text { with } a(n)=\sum_{k=0}^{n} n^{\underline{k}}=n!\sum_{k=0}^{n} \frac{1}{k!} \tag{22}
\end{equation*}
$$

The proof of the $a(n)$ is done by expanding the l.h.s. and picking coefficients of $t^{n} / n!$, for $n \geq 0$ (using induction over n).

The recurrence relation is $a(n+1)=(n+1) a(n)+1$, for $n \geq 0$, and $a(0)=1$. For $\{a(n)\}_{n=0}$ see A000522.
In addition one needs higher derivatives of $A(-1 ; n-1, x)$.

Lemma 2

$$
\begin{equation*}
\left(\frac{d}{d x}\right)^{k} A(-1 ; n-1, x)=(n-1)^{\frac{k}{2}}(x+k)(x+n-1)^{n-(k+2)}, \text { for } k \geq 0 \text { and } n \geq 1 \tag{23}
\end{equation*}
$$

Proof of the Lemma

By induction over k for fixed n. The case $k=0$ is satisfied because $(n-1)^{0}:=1$. The induction step for $\left(\frac{d}{d x}\right)^{k+1} A(-1 ; n-1, x)$ uses $(n-1)^{\underline{k}}(n-(k+1))=(n-1) \underline{k+1}$.
Continuing with the proof of part c) we start with the binomial expansion $A(-1 ; n, x)=x((x+n-$ $1)+1)^{n-1}=x \sum_{j=0}^{n-1}\binom{n-1}{j}(x+n-1)^{j}$, and eqs. (21) and (22). After division by $x(x \neq 0)$ one wants to prove, for fixed $n \geq 1$,

$$
\begin{equation*}
\sum_{j=0}^{n-1}\binom{n-1}{j}(x+n-1)^{j} \stackrel{!}{=} \sum_{k=0}^{n-1} \frac{a(k)}{k!} \frac{d^{k}}{d x^{k}} A(-1 ; n-1, x) \tag{24}
\end{equation*}
$$

where the k-sum is cut off at the degree of $A(-1 ; n-1, x)$. Applying Lemma 2 leads to the r.h.s. (RHS)

$$
\begin{equation*}
\text { RHS }=\sum_{k=0}^{n-1} \frac{a(k)}{k!}(n-1)^{\underline{k}}(x+k)(x+n-1)^{n-(k+2)} . \tag{25}
\end{equation*}
$$

In order to compare powers of $x+n-1$ on both sides of eq. (24), one rewrites $x+k=(x+n-1)+$ $(k-(n-1))$ for each term, except for $k=n-1$. This last term needs no rewriting, it is $a(n-1)$. The first term, $k=0$, leads to a rewritten first part $a(0)(x+n-1)^{n-1}$, and an addition to the rewritten first part of term $k+1$, i.e., $a(0)(-(n-1))(x+n-1)^{n-2}$. This $k=0$ term is the only one consisting of only one rewritten part.
For $k=0,1, \ldots, n-2$ the (x independent) second part of the replacement leads to $(a(k) / k!)(n-1)^{\underline{k}}(k-$ $(n-1))(x+n-1)^{n-k-2}$, which adds to the first part of the rewritten term for $k+1$ that will produce this power.
This means that each power $(x+n-1)^{n-k-2}$, for $k \in\{1,2, \ldots, n-1\}$ consist of two terms: the first one from the first part of the rewritten k term and the second one from the second part of the rewritten $k-1$ term. The single rewritten $k=0$ term is $a(0)(x+n-1)^{n-1}$, and it coincides with the $j=n-1$ term of the l.h.s. $(L H S)$ of eq. (24) because $a(0)=1$. The last term $k=n-1$ receives the additional second part of the $k=n-2$ term, i.e., $a(n-2)(n-1)(-1)$. This results in $a(n-1)-(n-1) a(n-2)=1$ (by the recurrence), coinciding with the $j=0$ term of the LHS.
Thus the coefficient of $(x+n-1)^{n-k-2}$, for $k=\{1,2, \ldots, n-1\}$, can be compared on both sides of eq. (24),

This can be rewritten with the relation between $(n-1)^{\underline{k}}$ and $(n-1)^{\underline{k+1}}$ used above in the proof of Lemma 2 as

$$
\begin{equation*}
R H S=\frac{(n-1) \underline{k}}{(k+1)!}(n-k-1)(a(k+1)-(k+1) a(k)), \tag{27}
\end{equation*}
$$

which equals the LHS because of the recurrence $a(k+1)-(k+1) a(k)=1$, and again using the falling factorial relation. This ends the proof of part \mathbf{c}).
d) The proof that $c_{N}(n)=\left.J W(n, x)\right|_{x=N}$ is shown for the corresponding e.g.f.s. By definition the e.g.f. of $\left\{c_{N}(n)\right\}_{n>=0}$ is $\exp (-N W(-y))$. From b) the e.g.f. of the row polynomials $\{J W(n, x)\}_{n \geq 0}$ is $\operatorname{EJW}(x, y)=\exp (-x W(-y)$ (expansion in $y)$. For $x=N$ the claim follows.
e) This follows from $J W(n, x)=A(-1 ; x, n)$ from \mathbf{c}), and the trivial computation of $x(x+n)^{n-1}$ by the binomial expansion, and a shift of the summation index. The case of the x^{0} coefficient is separated, giving $a(0,0)=1$.
f) for $N \neq 0$ and $n \geq 1, N(n+N)^{n-1}=n^{n}(N / n)(1+(N / n))^{n-1}=n^{n} \sum_{m=0}^{n-1}\binom{n-1}{m}(N / n)^{m+1}=$ $n^{n} \sum_{m=1}^{n}\binom{n-1}{m-1}(N / n)^{m}=\sum_{m=1}^{n}\binom{n-1}{m-1} n^{n-m} N^{m}=\sum_{m=1}^{n} a(n, m) N^{m}$, with $a(n, m)$ from part e), hence this equals $c(N, n)$, because the $m=0$ term $a(n, 0)=0$ for $n \geq 1$.
g) The Faà di Bruno formula is for $\frac{d^{n}}{d y^{n}} f(g(y))$, and here $\mathrm{f}(\mathrm{x})=\exp (\mathrm{Nx})$ and $g(y)=-W(-y)$. Because for $c_{N}(n)$ the formula is evaluated at $y=0$, one needs $\left.\frac{d^{m}}{d x^{m}} f(x)\right|_{x=g(0)=0}=N^{m}$ and $\left.\frac{d^{j}}{d y^{j}} g(y)\right|_{y=0}=j^{j-1}$ from eq. (11). The multinomials $n!/ \prod_{j=1}^{n} j^{!_{j}} e_{j}!$ appearing in this formula are called $M_{3}=M_{3}(\vec{e}(n, m))$, with $\vec{e}(n, m):=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, and the given restrictions on the nonnegative exponents of $\vec{e}(n, m)$ These multinomials are shown in $\underline{\text { A036040 (see the Abramowitz-Stegun }}$ link there).
This shows that $a(n, m)$ in eq. (15) for $c_{N}(n)$ equals the sum of M_{3}-partition polynomials (ParPolM3) over the $p(n, m)=\underline{A 008284}(n, m)$ partitions of n with m parts: $\sum_{k=1}^{p(n, m)} \operatorname{ParPolM3}\left(n, m, k,\left\{x_{j}=\right.\right.$ $\left.\left.j^{j-1}\right\}_{j=1 . . n}\right)$.
Example: $n=3$, the partitions for $m=1,2,3$ are $3^{1}, 1^{1} 2^{1}, 1^{3}$, respectively.
$c_{N}(3)=3!\left(N^{1} 3^{2} / 3!+N^{2}\left(1^{0} / 1!\right)\left(2^{1} / 2!\right)+N^{3}\left(1^{0} / 1!\right)^{3} / 3!\right)=9 N+6 N^{2}+N^{3}$. Compare this with row $n=3$ of $|\underline{\text { A137452 }}|:[0,9,6,1]$.

Proof of the Theorem

The step from the last equation of eq. (9) to the first equation of eq. (12), with $y=x z \exp (-z)$, is proved with the help of Proposition 4, part d) and the explicit form of $a(n, m)$ from part e).
The e.g.f. $\sum_{k=0}^{\infty}(k+N+1)^{k} y^{k} / k!$ is proved to be $(1 / N) d / d y\left(1+\sum_{k=1}^{\infty} c_{N}(k) y^{k} / k!\right)$, where $c_{N}(0)=1$ was used. This means, after comparing powers of y,

$$
\begin{equation*}
(k+N+1)^{k} \stackrel{!}{=} \frac{1}{N} c_{N}(k+1), \text { for } k \geq 0 \tag{28}
\end{equation*}
$$

Because $a(k+1,0)=0$ the r.h.s. becomes, with eq. (15) and an index shift in m, $\sum_{m=0}^{k} a(k+1, m+1) N^{m}$. From eq. (17) this becomes $\sum_{m=0}^{k}\binom{k}{m}(k+1)^{k-m} N^{m}$, but this is the binomial expansion of $((k+1)+N)^{k}$,
For the proof of the second equation of the Theorem, eq. (12), one uses the replacement $(W(-y) /(-y))^{N}$ by $\exp (N(-W(-x)))$, and with $d / d y(-W(-y))=\exp (-W(-y)) /(1-(-W(-y))$, one obtains

$$
\begin{equation*}
\frac{1}{N} \frac{d}{d y} e^{N(-W(-y))}=e^{N(-W(-y))} \frac{e^{-W(-y)}}{1-(-W(-y))}=\frac{e^{(N+1)(-W(-y))}}{1-(-W(-y))} \tag{29}
\end{equation*}
$$

We close with the result that for each integer N the row sum of the triangle $T S_{N}$ is $n!$.

Proposition 5

$$
\begin{equation*}
\sum_{k=0}^{n} T_{N}(n, k)=P S_{N}(n, 1)=n!\text {, for } N \in \mathbb{Z} \tag{30}
\end{equation*}
$$

Proof

We show that the e.g.f. of $\{P S(n, 1)\}_{n>=0}$, i.e., $E T S_{N}(1, z)$ from eq. (10) and eq. (12) becomes $1 /(1-z)$, the e.g.f. of $\{n!\}_{n \geq 0}$.
For $N=0$ one obtains for eq. (10) from $-\left.W(-y)\right|_{y=z \exp (-z)}=z$ (compositional inverse relation, see the proof of Lemma 1)

$$
\begin{equation*}
\operatorname{ETS}_{0}(1, z)=e^{-z} \frac{e^{z}}{1-z}=\frac{1}{1-z} . \tag{31}
\end{equation*}
$$

For integer $N \neq 0$ one uses in eq. (12) the previously mentioned compositionl inverse rule for $-W(-y)$ with $y=z \exp (-z)$

$$
\begin{equation*}
E T S_{N}(1, z)=e^{-(N+1) z} e^{N z} \frac{e^{z}}{1-z}=\frac{1}{1-z} \tag{32}
\end{equation*}
$$

The dependence on $N \neq 0$ dropped out.

3 Acknowlegement

The author thanks Harlan J. Brothers for asking him about a proof for the row sums of A075513, and an early version of his paper referring to the $N=0$ Sidi polynomials. This led to this work on the general N case. Thanks go to him also for reading and commenting this paper.
The latest version of the Harlan J. Brothers paper is called 'Pascal's Triangle: Infinite Paths to e', tbp.

References

[1] The On-Line Encyclopedia of Integer Sequences ${ }^{T M}$, published electronically at https://oeis.org., 2023.
[2] Steven Roman, The Umbral Calculus, Academic Press, 1984, Ch. 4, 1.5., pp. $72-75$.
[3] Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularitiesi/aí, Math. Comp., 35 (1980), 851-874. https://doi.org/10.1090/S0025-5718-1980-0572861-2.
[4] Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press,1999, p. 37, eq. (5.52).
[5] Eric Weisstsein's Mathworld (Wolfram), Lambert W-Function, https://mathworld.wolfram.com/LambertW-Function.html.
[6] Eric Weisstsein's Mathworld (Wolfram), Abel Polynomial, https://mathworld.wolfram.com/AbelPolynomial.html.
[7] Eric Weisstsein's Mathworld (Wolfram), Faà di Bruno's Formula, https://mathworld.wolfram.com/FaadiBrunosFormula.html
[8] Wikipedia, Lambert W function, https://en.wikipedia.org/wiki/Lambert_W_function.
[9] Wikipedia, Abel polynomials, https://en.wikipedia.org/wikii/Abel_polynomials.

OEIS[1] A-numbers: $\underline{A 000169}, \underline{A 000272} \underline{A 000522} \underline{A 008284}, \underline{A 036040}, \underline{A 075513}, \underline{A 137452 \mid} \mid, \underline{A 154715}, \underline{A 232006}, \underline{A 258}$

Keywords: Sidi polynomials, Lambert function, Sheffer triangles, Abel polynomial.
MSC-Numbers: 11Y55, 11C08, 33E20.

[^0]: ${ }^{1}$ wolfdieter.lang@partner.kit.edu, http://www.itp.kit.edu/~wl

