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Abstract

For finite sums of non-negative powers of arithmetic progressions the generating functions (ordinary and ex-
ponential ones) for given powers are computed. This leads to a two parameter generalization of Stirling and
Eulerian numbers. A direct generalization of Bernoulli numbers and their polynomials follows. On the way to
find the Faulhaber formula for these sums of powers in terms of generalized Bernoulli polynomials one is led to
a one parameter generalization of Bernoulli numbers and their polynomials. Generalized Lah numbers are also
considered.

1 Introduction and Summary

A) Generating functions of power sums and powers. Generalized Stirling2 and Eulerian numbers.

Finite sums of non-negative powers of positive integers have been studied by many authors. See Edwards, [6],
[7] and Knuth [12] for some history, and the books on Johannes Faulhaber by Hawlitschek [11] and Schneider [23].

We are interested in finite sums of power of arithmetic progressions (PS for power sums)

PS(d, a;n,m) :=

m∑

j=0

(a + d j)n with n ∈ N0, m ∈ N0, d ∈ N, a ∈ N0 . (1)

Note that the lower summation index for j is 0. We put 00 := 1 if a = 0 and n = 0. (In Maple 13 [19] 00

is put to 0). It is sufficient to consider a = 0 if d = 1, and a ∈ RRS(d) for d ≥ 2, where RRS(d) denotes
the smallest positive restricted residue system modulo d, i.e., RRS(d) := {k ∈ RS(d) | gcd(k, d) = 1} with
RS(d) := {0, 1, ..., d− 1}, the smallest non-negative residue system modulo d.

The aim of the first part of this paper is is to compute the ordinary (o.g.f. , symbolized by G) and exponential
generating functions (e.g.f. , symbolized by E) for given powers n. Such functions are considered in the framework
of formal power series, without considering questions of convergence. Proofs will be given in section 2.

The o.g.f. (indeterminate x) is

GPS(d, a;n, x) :=

∞∑

m=0

PS(d, a;n,m)xm, n ∈ N0 . (2)

The e.g.f. (indeterminate t) is

EPS(d, a;n, t) :=

∞∑

m=0

PS(d, a;n,m)
tm

m!
, n ∈ N0 . (3)

As is known, the e.g.f. is obtained from the o.g.f. via inverse Laplace transform as

E(t) = L−1

[
1

p
G

(
1

p

)]
, (4)

and vice versa by a direct Laplace transform to get G from E.
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Of course, application of the binomial theorem immediately leads, after an exchange of the two finite sums, to a
formula for PS(d, a;n,m) in terms of the ordinary power sums PS(n,m) = PS(1, 0;n,m), viz

PS(d, a;n,m) =

n∑

k=0

(
n

k

)
an−k dk PS(k,m) , (5)

and therefore, if we interchange an infinite sum with a finite sum,

GPS(d, a;n, x) :=

n∑

k=0

(
n

k

)
an−k dk GPS(k, x) , (6)

with GPS(k, x) = GPS(1, 0; k, x). Similarly,

EPS(d, a;n, t) :=
n∑

k=0

(
n

k

)
an−k dk EPS(k, t) , (7)

with EPS(k, t) = EPS(1, 0; k, t). Therefore it is in principle sufficient to compute GPS(k, x) and use an inverse
Laplace transform to find EPS(k, t). It may however be difficult (or impossible) to give its explicit form.

Instead of GPS(n, x) we prefer to compute the general GPS(d, a;n, x) directly. In this way we find

GPS(d, a;n, x) =

n∑

k=0

S2(d, a;n, k) k!
xk

(1− x)k+2
, (8)

where the generalized Stirling numbers of the second kind (generalized subset numbers) enter via the reordering
process

(a1 + dEx)
n =:

n∑

m=0

S2(d, a;n,m)xm d m
x , (9)

with the Euler operator Ex := xdx where dx is the differentiation operator, and 1 is the identity operator.

This definition leads to the three term recurrence relation

S2(d, a;n,m) = dS2(d, a;n− 1,m− 1) + (a + dm)S2(d, a;n− 1,m), for n ≥ 1 , m = 0, 1, ..., n , (10)

with S2(d, a;n,−1) = 0, S2(d, a;n,m) = 0 for n < m and S2(d, a; 0, 0) = 1.

This recurrence is obeyed by

S2(d, a;n,m) =
1

m!

m∑

k=0

(−1)m−k

(
m

k

)
(a + d k)n . (11)

These generalized Stirling numbers build a lower triangular infinite dimensional matrix, named S2[d, a] which turns
out to be an exponential convolution array like the ordinary Stirling S2 matrix, i.e., a Sheffer matrix, denoted by

S2[d, a] = (eax, edx − 1) . (12)

For Sheffer matrices see the W. Lang link in OEIS [21], A006232 called “Sheffer a- and z-sequences”, the second
part, where also references are given. (Henceforth A-numbers will be given without quoting OEIS each time.)

A three parameter generalization of Stirling numbers of the second kind has been proposed in Bala [1] as S(a,b,c).
The present generalization is S2(d, a;n,m) = dm S(d,0,a). There Sheffer arrays are called exponential Riordan
arrays.

A one parameter generalization is given in Luschny [17] called Stirling-Frobenius subset numbers, with the scaled
version called there [SF-SS] with parameter m corresponding to S2[m,m− 1]. The [SF-S] triangle family coincides
with Bala’s S(m,0,m−1).

The Sheffer structure (exponential convolution polynomials) means that the e.g.f. of the sequence of column m is

ES2Col(d, a; t,m) = ea t (e
d t − 1)m

m!
, m ∈ N0 . (13)
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This corresponds to the o.g.f.

GS2Col(d, a;x,m) =
(d x)m∏m

j=0 (1 − (a+ d j)x)
, m ∈ N0 . (14)

This means that the column scaled Sheffer triangle Ŝ2[d, a] =
(
eax, 1

d
(edx − 1)

)
with elements Ŝ2(d, a;n,m) =

S2(d, a;n,m) 1
dm are

Ŝ2(d, a;n,m) = h
(m+1)
n−m [d, a], (15)

where h
(m+1)
k [d, a] are the complete homogeneous symmetric functions of degree k of them+1 symbols aj = a+ d j,

j = 0, 1, ..., m, and h
(m+1)
0 = 1. If [d, a] = [1, 0] the symbol a0 = 0 can be omitted, and only the m symbols

aj = a + d j for j = 1, 2 ..., m are active. For symmetric functions see e.g., [14], p. 53, and p. 54, eq (46).

The transition matrix property of the S2[1,0] =S2 (see [9] p. 262, eq. (6.10)) generalizes to

xn =

n∑

m=0

Ŝ2(d, a;n,m) fallfac(d, a;x,m) , n ∈ N0 , (16)

where the generalized falling factorial is (see also Bala [1] where this falling factorial appears in eq. (15) as special
[t; d, 0, c]n in the signed Stirling1 context. See the present part C for the unsigned case)

fallfac(d, a;x,m) :=

m−1∏

j=0

(x − (a+ j d) with fallfac(d, a;x, 0) := 1 . (17)

This can also be written in terms of the usual falling factorials xn :=
∏n−1

j=0 (x − j), for n ∈ N and x0 := 1 as

fallfac(d, a;x,m) = dm
(
x− a

d

)m

.

Using the binomial theorem in eq. (11) and interchanging the sums shows that S2[d, a] (when the matrix elements
are not specified we use this notation) can be written in terms of the usual Stirling2 numbers S2 = S2[1, 0] as,

S2(d, a;n,m) =

n∑

k=0

(
n

k

)
an−k dk S2(k,m) . (18)

For the inverse of this relation see Lemma 10, eq. (160), in the proof section, part C.

A standard recurrence for Sheffer row polynomials ([22], p. 50, Corollary 3.7.2) leads, with PS2(d, a;n, x) :=∑n

m=0 S2(d, a;n,m)xm, to

PS2(d, a;n, x) = [a + d x + dEx]PS2(d, a;n− 1, x) , for n ∈ N , (19)

with input PS2(d, a; 0, x) = 1.

The eq. (8) version of the o.g.f. is not convenient to find EPS(d, a;n, t) by inverse Laplace transform because of
the power k + 2 instead of k + 1. The solution is to consider first the o.g.f. of the powers (instead of the one of
the sums of powers) which can be found analogously to the GPS case. Of course, if eq. (8) has been proved the
o.g.f. for the first difference sequence follows immediately. This will later lead to another form of GPS which is
amenable to find EPS.

GP (d, a;n, x) :=

∞∑

m=0

(a + dm)n xm , (20)

=

n∑

k=0

S2(d, a;n, k) k!
xk

(1− x)k+1
. (21)

From this the e.g.f. can be computed directly based on L−1

[
1

(p− 1)k+1

]
=

tk

k!
et, using the linearity of the inverse

Laplace transform.

EP (d, a;n, t) = et
n∑

k=0

S2(d, a;n, k) tk . (22)
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Continuing with the search for a more tractable form of GPS(d, a;n, x) we apply another reordering identity on
GP (d, a;n, x), viz

n∑

j=0

b
(n)
j

xj

(1− x)j+1
=

1

(1 − x)n+1

n∑

i=0

a
(n)
i xi , n ∈ N0 , (23)

with

a
(n)
i =

i∑

j=0

(−1)i−j

(
n− j

i− j

)
b
(n)
j , (24)

b
(n)
j =

j∑

i=0

(
n− i

j − i

)
a
(n)
i . (25)

Note that this reordering identity can not be applied to GPS(d, a;n, x) because of the wrong power in the denom-
inator. But here it produces

GP (d, a;n, x) =
1

(1 − x)n+1
PrEu(d, a;n, x) , with the polynomials (26)

PrEu(d, a;n, x) =

n∑

k=0

rEu(d, a;n, k)xk , where (27)

rEu(d, a;n, k) =
k∑

j=0

(−1)k−j

(
n− j

k − j

)
S2(d, a;n, j) j! . (28)

Here rEu(d, a;n, k) are generalized Eulerian numbers, which constitute a number triangle (sometimes called Euler

triangle) but compared with the usual Eulerian triangle for [d, a] = [1, 0], given in Graham et al. [9], Table 268,
p. 268, or A173018, the rows are reversed. The row reversed number triangle is shown in A123125. This explains
the r in front of Eu for Eulerian.
The inverse of the relation between rEu[d, a] and S2[d, a] is

S2(d.a;n,m)m! =

m∑

k=0

(
n− k

m− k

)
rEu(d, a;n, k) . (29)

From the explicit form of S2[d, a] in eq.(11) the one for rEu[d, a] follows by eq. (23).

rEu(d, a;n, k) =

k∑

j=0

(−1)k−j

(
n+ 1

k − j

)
(a+ d j)n . (30)

In terms of the usual Eulerian numbers one finds from eqs. (28) with (18) and eq. (29) for [d, a] = [1, 0]

rEu(d, a;n, k) =

n∑

m=0

(
n

m

)
an−m dm

k∑

p=0

(−1)k−p

(
n−m

k − p

)
rEu(m, p) . (31)

Note that no formula analogous to eq. (18) holds due to the different binomial structure in rEu[d, a] of eq. (28).

The three term recurrence for rEu[d, a] is

rEu(d, a;n,m) = (d (n−m) + (d− a)) rEu(d, a;n− 1,m− 1) + (a + dm) rEu(d, a;n− 1,m), (32)

for n ≥ 1 , m = 0, 1, ..., n, with rEu(d, a;n,−1) = 0, rEu(d, a;n,m) = 0 for n < m and rEu(d, a; 0, 0) = 1.

The corresponding (ordinary, not exponential) row polynomials are

PrEu(d, a;n, x) :=

n∑

m=0

rEu(d, a;n,m)xm , n ∈ N0 . (33)

From eq. (21) and eqs. (26) with (27) follows a relation between these rEu[d, a] row polynomials and those of the
number triangle with entries S2fac(d, a;n,m) := S2(d, a;n,m)m!, named PS2fac(d, a;n, x), viz

PrEu(d, a;n, x) = (1 − x)n PS2fac

(
d, a;n,

x

1− x

)
. (34)
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It may be noted, in passing, that the transformation y =
x

1 + x
, or x =

y

1 − x
is called Euler’s transformation

(see, e.g., [10], p. 191, last row).

From this preceding relation the e.g.f. (i.e., the e.g.f. for the row reversed Eulerian triangle) follows:

EPrEu(d, a; t, x) =
(1 − x) ea (1−x) t

1 − x ed (1−x) t
. (35)

This is not a Sheffer structure, not even one of the more general Brenke type g(z)B(x z), [2], [4], p. 167.

The e.g.f. of the row sums (x → 1) of rEu[d, a] is obtained via l’Hôpital’s rule as
1

1 − d t
, independently of a.

A one parameter k-family of generalized Eulerian polynomials An,k(x) with coefficient triangles has been considered
by Luschny [18]. The coefficients of An,k(x) build Eu[k, 1] = rEu[k, k − 1].

Now the new form of GPS(d, a;n, x) is simply obtained by multiplying GPS(d, a;n, x) with
1

1 − x
because this is

the rule to obtain the o.g.f. for partial sums of a sequence from the o.g.f. of the sequence.

GPS(d, a;n, x) =
1

(1 − x)n+2
PrEu(d, a;n, x) . (36)

There is still this power n+ 2 but now we can use the reordering identity, eq. (23) with n replaced by n+ 1:

n+1∑

j=0

b
(n+1)
j

xj

(1 − x)j+1
=

1

(1 − x)(n+1)+1

n+1∑

i=0

a
(n+1)
i xi , (37)

with (see eq. (30))

a
(n+1)
i = rEu(d, a;n, i) =

i∑

p=0

(−1)i−p

(
n+ 1

i− p

)
(a + d p)n . (38)

Note that a
(n+1)
n+1 = 0 because PrEu(d, a;n, x) has degree n.

Note that now the x dependence is amenable for a later inverse Laplace transform. The calculation of b
(n+1)
j is a

bit lengthy but it turns out to have a nice form (we add the [d, a] parameters).

b
(n+1)
j (d, a) = S2(d, a;n, j) j! + S2(d, a;n, j − 1) (j − 1)! =: ΣS2(d, a;n, j) , (39)

leading finally to the result for the e.g.f.

EPS(d, a;n, t) = et ΣS2(d, a;n, j)
tj

j!
, n ∈ N0 . (40)

Let us recapitulate the detour we made in a diagram referring to eq. (23) for obtaining two versions of GP or GPS:

GPSv1
(23)
9 GPSv2

L−1

→ EPS

↓ ↑

GPv1
(23)
→ GPv2 . (41)

B) Generalized Faulhaber formula and Bernoulli polynomials
The next topic is to find for the power sum PS(d, a;n,m) a formula in terms of Bernoulli polynomials evaluated
appropriately. This formula has bee named Faulhaber formula for the ordinary [d, a] = [1, 0] case by Conway and
Guy [5], p. 106. Faulhaber used the numbers, later called Bernoulli numbers by de Moivre and Euler (see [6], [7]),
already by 1631 before Jakob I Bernoulli. For this formula see [9], p. 367. eq. (7.79), and [13], p. 167 eq. (1).
Here it is, with our definition of PS(n,m) = PS(1, 0;n,m),

PS(n,m) = δn,0 +
1

n+ 1
(B(n+ 1, x = m+ 1) − B(n+ 1, x = 1)) , n ∈ N0 , (42)
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where δn,0 = [n = 0] is the Kronecker symbol: 1 if n = 0 and 0 otherwise. The Bernoulli numbers are defined
recursively by (see [9], p. 284, eq. (6.79))

B(n) :=
1

n + 1

(
δn,0 −

n−1∑

k=0

(
n+ 1

k

)
B(k)

)
for n ∈ N, with B(0) = 1 . (43)

They have B(1) = −
1

2
and are found in OEIS [21] under A027641 /A027642. The corresponding Bernoulli

polynomials are

B(n, x) :=

m∑

m=0

(
n

m

)
B(n−m)xm . (44)

Their coefficient tables are given in A196838/A196839 or A053382 / A053383 for rising or falling powers of x,
respectively.

For the generalized case one finds for the power sums PS(d, a;n,m) from eqs. (5) and (42) the following Faulhaber

formula in terms of ordinary Bernoulli polynomials

PS(d, a;n,m) =

n∑

k=0

(
n

k

)
an−k dk

[
δk,0 +

1

k + 1
(B(k + 1, x = m+ 1) − B(k + 1, x = 1))

]
. (45)

But the idea is to find the analogon of formula (42) with generalized Bernoulli polynomials.

An obvious generalization of the Bernoulli numbers is

B(d, a;n) :=
n∑

m=0

(−1)m
1

m+ 1
S2(d, a;n,m)m! , n ∈ N0 . (46)

For [d, a] = [1, 0] see, e.g.,Charalambides [3], or the formula and Maple section of A027641.

From eq.(18) one finds B[d, a] in terms of B.

B(d, a;n) :=

n∑

m=0

(
n

m

)
an−m dmB(m) . (47)

The e.g.f. of {B(d, a;n)}∞n=0 is

EB(d, a; t) =
d t ea t

ed t − 1
. (48)

The corresponding generalized Bernoulli polynomials are (compare with eq. (44))

B(d, a;n, x) :=

n∑

m=0

(
n

m

)
B(d, a;n−m)xm , (49)

and from eq. (47) they can also be written in terms of {B(m)}nm=0 as

B(d, a;n, x) :=

n∑

m=0

(
n

m

)
dmB(m) (a + x)n−m . (50)

Their e.g.f. is, either from eq. (49) or (50),

EB(d, a; t, x) =
d t ea t

ed t − 1
ex t , (51)

identifying their coefficients as Sheffer arrays

(
d z ea z

ed z − 1
, z

)
. Such arrays are of the so called Appell type (compare

Roman [22], pp. 26 - 28, with a different notation). It turns out that in order to obtain a generalized Faulhaber

formula in terms of Bernoulli polynomials the B[d, a] just introduced are not quite the ones needed. In fact, they
are too general. One has to work with the polynomials depending only on d, viz

B(d;n, x) =

n∑

m=0

(
n

m

)
B(d;n−m)xm , (52)
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with the generalized Bernoulli numbers

B(d;n) := B(d, a = 0;n) = dn B(n) , n ∈ N0 . (53)

They can also be obtained by exponential convolution of the more general ones with the sequence {−an}∞n=1.

B(d;n) =

n∑

m=0

(
n

m

)
B(d, a;n−m) (−a)m . (54)

For a = 0 only m = 0 survives and B(d,0;n) results. But also for non-vanishing a the a dependence drops out, as
can be seen from the e.g.f. of the sequence on the r.h.s., using eq. (48).

d t ea t

ed t − 1
e−a t =

d t

ed t − 1
= EB(d, a = 0; t) =: EB(d; t) . (55)

For B(d;n) with d = 2, 3 and 4 see (−1)nA239275(n)/A141459(n), A285863(n)/A285068(n) and
A288873(n)/A141459(n).

The e.g.f. of the polynomial system {B(d;n, x)}∞n=0 of eq. (52) is

EB(d; t, x) =
d t

ed t − 1
ex t = EB(d, a = 0; t, x) . (56)

The Appell type Sheffer structure is obvious.

Now the stage is set for giving the result for the generalized Faulhaber formula in terms of the polynomialsB(d, n, x).

PS(d, a;n,m) =
1

d (n+ 1)
[B(d;n+ 1, x = a + d (m+ 1)) − B(d;n+ 1, x = d)

− B(d;n+ 1, x = a) + B(d, n+ 1, x = 0) + d δn,0] . (57)

Here B(d, n+1, x = 0) = B(d;n+1) = dn+1 B(n+1), and the Kronecker symbol enters because of our definition
of PS(d, a;n,m) where the sum starts with j = 0, not with 1.

The generalized Lah numbers L[d, a] are discussed in the proof section 2, C) 4.

C) Generalized Stirling1 numbers

As elements of the Sheffer group the inverse of the (infinite, lower triangular) matrix S2[d, a] exists and is called
S1[d, a]. This is therefore a generalized Stirling number triangle of the first kind.

S2[d, a] · S1[d, a] = 1 = S1[d, a] · S2[d, a] , (58)

with the (infinite dimensional) identity matrix 1. For practical purposes it is sufficient to consider the finite
dimensional case of N × N matrices. S1[d, a] is a signed matrix with fractional entries for d 6= 1. Therefore, in
order to have non-negative entries one considers S1p[d, a] with entries S1p(d, a;n,m) := (−1)n−m S1(d, a;n,m).

But in the combinatorial context also a scaling is needed to obtain a non-negative integer matrix Ŝ1p[d, a] with
diagonal entries 1 (i.e., monic row polynomials). This is done by scaling the S1p[d, a] rows n with dn.

We then have the Sheffer structures

S1[d, a] =

(
1

(1 + x)
a

d

,
1

d
log(1 + x)

)
, and Ŝ1p[d, a] =

(
1

(1 − d x)
a
d
, −

1

d
log(1 − d x)

)
. (59)

The Ŝ2[d, a] matrices (see eq. (15)) which have scaled matrix elements Ŝ2(d, a;n,m) = S2(d, a;n,m)/dm have the

signed inverse matrices Ŝ1[d, a] =

(
(1 + d x)−

a

d ,
1

d
log(1 + d x)

)
.

The signed Ŝ1[d, a] matrices have been considered by Bala [1] as s(d,0,a). In Luschny [17] the SF −C matrices are

our Ŝ1p[d, d− 1], and the SF − CS matrices are the unsigned inverse matrices of Ŝ2[d, d− 1].

The Sheffer structure of Ŝ1p[d, a] means that the e.g.f. of column m is

EŜ1pCol(d, a; t,m) =
1

(1 − d t)
a

d

1

m!

(
−
1

d
log(1 − d t)

)m

, m ∈ N0 . (60)
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There seems not to exist a simple form for the corresponding o.g.f. .

The three term recurrence for the Ŝ1p[d, a] matrix entries is

Ŝ1p(d, a;n,m) = Ŝ1p(d, a;n− 1,m− 1) + (dn − (d− a)) Ŝ1p(d, a;n− 1,m), for n ≥ 1 , m = 0, 1, ..., n , (61)

with Ŝ1p(d, a;n,−1) = 0, Ŝ1p(d, a;n,m) = 0 for n < m and Ŝ1p(d, a; 0, 0) = 1.

The usual transition from the monomial basis {xn}∞n=0 to the rising factorials (see [9], p. 263, eq. (6.11)) generalizes

to the following identification of the row polynomials of Ŝ1p[da]

PŜ1p(d, a;n, x) :=

n∑

m=0

Ŝ1p(d, a;n,m)xm = risefac(d, a;x, n) , (62)

with the generalized rising factorials (compare this with the generalized falling factorials eq. (17))

risefac(d, a;x, n) :=

n−1∏

j=0

(x + (a+ j d)) with risefac(d, a;x, 0) := 1. (63)

This can be rewritten also in terms of the usual rising factorial xn :=
∏n

j=0 (x + j) for n ∈ N and x0 := 1 as

risefac(d, a;x, n) = dn
(
x+ a

d

)n

. In terms of falling factorials this is risefac(d, a;x, n) = (−d)n
(
−(x+ a)

d

)n

.

This identification implies via Vieta’s theorem that the coefficients of the monic polynomial PŜ1p(d, a;n, x) are

the elementary symmetric functions σ
(n)
n−m(a0, a1, ..., an−1) in the indeterminates {aj}

n−1
j=0 given by aj := a + j d,

with σn
0 := 1. Sometimes σ

(n)
n−m[d, a] is used for these symmetric functions. Thus

Ŝ1p(d, a;n,m) = σ
(n)
n−m(a0, a1, ..., an−1), with aj = a + j d . (64)

If d = 1 (and a = 0) a0 = 0 does not contribute and one can write Ŝ1p(1, 0;n,m) = S1p(n, m) =

σ
(n−1)
n−m (1, 2, ..., n− 1).

Sorting in falling powers of a one obtains the formula for Ŝ1p(d, a;n,m) in terms of the usual unsigned Stirling1

numbers S1p(n, m) =A132393(n, m).

Ŝ1p(d, a;n,m) =

n−m∑

j=0

(
n− j

m

)
S1p(n, n− j) an−m−j dj =

n∑

j=m

(
j

m

)
S1p(n, j) aj−m dn−j . (65)

This satisfies the recurrence relation eq. (61).

The standard Sheffer recurrence ([22], p. 50, Corollary 3.7.2) for these row polynomials boils down to

PŜ1p(d, a;n, x) = (x+ a)PŜ1p(d, a;n − 1, x + d) , n ∈ N , (66)

with input PŜ1p(d, a; 0, x) = 1.

From the Sheffer property the e.g.f. of these row polynomials, i.e., the e.g.f. of the number triangle Ŝ1p[d, a], is

EPŜ1p(d, a; t, x) =
1

(1 − d t)
a

d

exp

(
−x

1

d
log(1 − d t)

)
=

1

(1 − d t)
a+x

d

. (67)

For the Meixer type recurrence see the proof section 2, C), 7.

A more involved problem is to find the generalization of the formula giving Ŝ1p(d, a;n,m) in terms of the column

scaled Ŝ2(d, a;n,m) elements. The standard Schlömilch formula is (see, e.g., [3], p. 290, eq. (8.20) for the signed
S1 entries)

S1p(n, m) = (−1)n−m

n−m∑

k=0

(−1)k
(
n+ k − 1

m− 1

)(
2n−m

n−m− k

)
S2(n−m+ k, k) . (68)
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The direct proof starts with eq. (65). Inserting the Schlömilch formula just given, then using the inverse of eq. (18)
leads to

Ŝ1p(d, a;n,m) = an−m

n∑

j=m

(
j

m

) n−j∑

k=0

(
n− k − 1

j − 1

)(
2n− j

n− j − k

)
ak ∗

∗

n−j+k∑

l=0

(−1)l
(
n− j + k

l

)
a−l Ŝ2(d, a; l, k) , for n ≥ m ≥ 0 . (69)

Note that this result also holds for a = 0 because then an−m+k−l becomes δ0,n−m+k−l (from 00 = 1) leading to

a collapse of the l−sum, and the remaining two sums produce Ŝ1p(d, 0;n,m) = dn−m S1p(n, m).

Also the known result for m = 0 from eq. (62) is recovered, viz Ŝ1p(d, a;n, 0) = risefac(d, a; 0, n) = dn
(
a
d

)n
.

For another formula, following from a proof along the lines of the ordinary formula in [3], p. 290, see the proof
section C, eq. (175).

The inverse of the generalized Lah matrix L−1[d, a] is discussed in the proof section 2, C) 4.

D) Combinatorial Interpretation

I) Ŝ2[d, a]

The o.g.f. , eq. (14), divided by dm, which generates the complete homogeneous symmetric functions h
(m+1)
n−m [d, a] of

degree n−m of the m+1 symbols aj = a + d j, j = 0, 1, ..., m, leads immediately to the following combinatorial

interpretation of Ŝ2(d, a;n,m) :=
1

dm
S2(d, a;n,m) (see eq. (15)).

Ŝ2(d, a;n,m) is for d ≥ 2 the (dimensionless) total volume of the multichoose(m+ 1, n−m) =
(
n
m

)
hyper-cubes

and hyper-cuboids (polytopes) of dimension n −m which are build from the n −m orthogonal Zn−m vectors of
lengths taken from the repertoire aj = a + d j, j = 0, 1, ..., m.

For d = 1 (and a = 0), the standard Stirling2 case S2 = S2[1, 0] = Ŝ2[1, 0], a0 = 0 does not contribute and the
n−m vectors are from the set {1, 2, ..., m} for the multichoose(m, n−m) =

(
n−1
m−1

)
polytopes.

Some examples:

a) Ŝ2(1, 0; 3, 2) = S2(3, 2) = 3 from the

(
2

1

)
= 2 polytopes of dimension 1 with basis lengths 1, 2, i.e., two lines

of length 1 and 2 with total length 3.

b) Ŝ2(2, 1; 3, 2) = 9 (see A039755) from the

(
3

2

)
= 3 polytopes of dimension 1 with basis lengths 1, 3, 5, i.e.,

three lines of total length 9.

c) Ŝ2(3, 2; 3, 1) = 39 (see A225468) from the

(
3

1

)
= 3 polytopes of dimension 2 with basis lengths from the set

{2, 5}, i.e., two squares of area 22 and 52 and a rectangle of area 21 51, giving total area 4 + 25 + 10 = 39.

II) Ŝ1p[d, a]

From eq. (62) for the row polynomials and the implied elementary symmetric function formula for Ŝ1p(d, a;n,m)
of eq. (64) one has the combinatorial interpretation.

Ŝ1p(d, a;n,m) is for d ≥ 2 the total volume of the
(

n
n−m

)
hyper-cuboids of dimension n−m formed from the n−m

orthogonal Zn−m vectors with distinct (dimensionless) lengths from the n-set {a + d j | j = 0, 1, ..., n − 1}. For
[d, a] = [1, 0] the ordinary unsigned Stirling1 number S1p(n, m) (see A132393) gives the total volume of the

(
n−1
n−m

)

hyper-cuboids of dimension n−m formed from the n−m orthogonal Zn−m vectors with distinct (dimensionless)
lengths from the (n− 1)-set {1, 2, ... n− 1}.

Some examples:

a) Ŝ1p(1, 0; 4, 2) = S1p(4, 2) = 11 (see A132393) from the

(
3

2

)
= 3 hyper-cuboids of dimension 2 with distinct

basis vector lengths from the set {1, 2, 3}, i.e., six rectangles of area 1 · 2, 1 · 3 and 2 · 3, with total area
2 + 3 + 6 = 11.
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b) Ŝ1p(2, 1; 4, 1) = 176 (see A028338) from the

(
4

3

)
= 4 hyper-cuboids of dimension 3 with distinct basis vector

lengths from the set {1, 3, 5, 7}, i.e., four cuboids with volumes 1 · 3 · 5, 1 · 3 · 7, 1 · 5 · 7 and 3 · 5 · 7, adding
to 176.

c) Ŝ1p(3, 1; 4, 0) = 280 (see A286718) from the

(
4

4

)
= 1 hyper-cuboid of dimension 4 with distinct basis vector

lengths from the set {1, 4, 7, 10}, i.e., the 4D hyper-cuboid with volume 1 · 4 · 7 · 10 = 280.

Two remarks: The first column sequences {Ŝ1p(d, 1;n, 0)}∞n=1 have also an interpretation as numbers of (d+1)-ary
rooted increasing trees with n vertices, including the root vertex. This is the sequence {S(k = d + 1;n, 1)} of
generalized Stirling2 numbers with parameter k in the notation of [15], eq. (5). The reason is the e.g.f. called

there g2(k = d+ 1;x) = −1 + (1 + (1− (d+ 1))x)
1

1−(d+1) = −1 + (1 − d x)−
1
d which is the e.g.f. of the m = 0

column of Ŝ1p[d, 1], viz EŜ1pCol(d, 1;x, 0) = (1 − d)−
1
d (see eq. (60)) but with the n = 0 entry removed. See

the instances A001147, A007559, A007696, A008548, ... for d = 2, 3, 4, 5 ..., respectively. They are, for n >= 1,
the number of 3, 4, 5, 6, ...-ary increasing rooted trees.

Similarly, the first column sequences {Ŝ1p(d, d− 1;n, 0)}∞n=1 are related to another variety of increasing trees given

by the e.g.f. g2p(k = d− 1;x) = 1 − (1 − d x)
1
d for the sequence {|S(−k = 1− d;n, 1)|}∞n=0 of [15], eq. (6). This

is related to the e.g.f. of the sequence {Ŝ1p(d, d − 1, n, 0)}∞n=0, i.e., EŜ1pCol(d, d − 1;x, 0) = (1 − d x)−
d−1
d by

integrating and adding 1:
∫
dx gŜ1p(d, d− 1;x) + 1 = g2p(d− 1;x).

Some instances are: A001147, A008544, A008545, A008546, ... for d = 2, 3, 4, 5 ..., respectively.

The combinatorial interpretation of rEU[d, a] should also be considered.

2 Proofs

In the following proofs the setting of formal power series is used. No convergence issues are considered.
Infinite sums are interchanged (one could use alternatively a large cutoff). Differentiation as well as integration
will also be interchanged with infinite sums. Only statements which are not already obvious from the main text
are proved here. Note that for binomials the definition of [9], p. 154, eq. (5.1) is taken. This is not the definition
used by Maple13 [19]. Also 00 := 1. The symmetry of binomial coefficients is used ad libitum (but the upper
number in the binomial has to be a non-negative integer).

A) Proofs of section 1A

1. Proof of eqs. (8) to (11)

Lemma 1: With the notation of eq. (9):

(a1 + dEx)
n xj = (a + d j)n xj . (70)

Proof: Trivial, by induction over n ∈ N0 with j ∈ N0.

For the o.g.f. GPS(d, a;n, x) from eq. (2) with eq. (1) one has, after an exchange of the two sums, inserting xj x−j

and application of Lemma 1:

GPS(d, a;n, x) =

∞∑

m=0

xm
m∑

j=0

(a + d j)n =

∞∑

j=0

(a + d j)n
∞∑

m=j

xm

=

∞∑

j=0

(
(a1 + dEx)

n xj
) ∞∑

m=j

xm−j =

∞∑

j=0

(
(a1 + dEx)

n xj
) 1

1 − x
. (71)

After summing over j, the reordering of differentials from eq. (9), i.e., the definition of S2(d, a;n,m), is used:

= (a1 + dEx)
n 1

(1 − x)2
=

n∑

k=0

S2(d, a;n, k)xk dk
x

1

(1 − x)2

=

n∑

k=0

S2(d, a;n, k) k!
xk

(1 − x)2+k
. (72)
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The three term recurrence eq. (10) of the number triangle {S2(d, a;n, k)} follows from the definition eq. (9):

n+1∑

m=0

S2(d, a;n+ 1,m)xm dm
x = (a1 + dEx) (a1 + dEx)

n = (a1 + dEx)

n∑

m=0

S2(d, a;n,m)xm dm
x

=

n∑

m=0

S2(d, a;n,m) a xm dm
x +

n∑

m=0

S2(d, a;n,m) d
(
mxm dm

x + xm+1 dm+1
x

)

=

n+1∑

m=0

S2(d, a;n,m) (a + dm)xm dm
x +

n+1∑

m=1

S2(d, a;n,m− 1) d xm dm
x . (73)

In the second to last sum the m = n+ 1 term has been added due to the triangle condition S2(d, a;n,m) = 0 if
n < m. In the last sum the lower index m = 0 can be added because of the input condition S2(d, a;n,−1) = 0.
Comparing powers of xm dm

x then leads to the recurrence eq. (10) after the change n → n− 1.

The explicit form of S(d, a;n,m) from eq. (11) satisfies the recurrence eq. (10) together with the inputs because

dS2(d, a;n− 1,m− 1) + (a + dm)S2(d, a;n− 1,m)

=

m−1∑

k=0

d

(m− 1)!
(−1)m−k (−1)

(
m− 1

k

)
(a + d k)n−1 +

m∑

k=0

1

m!
(−1)m−k

(
m

k

)
(a + dm) (a + d k)n−1

=
1

m!

m∑

k=0

(−1)m−k

(
m

k

) [
−dm

(
m−1
k

)
(
m

k

) + (a + dm)

]
(a + d k)n−1 . (74)

I the first term of the last sum the term k = m does not contribute because of the binomial. Now the term within
the bracket becomes

[...] = −d
m

m
(m − k) + (a + dm) = a + d k , (75)

leading to the l.h.s. of the recurrence, viz S2(d, a;n,m) of eq. (11)

For the instances of S2[d, a] for [d, a] = [1, 0], [2, 1], [3, 1], [3, 2], [4, 1], ]4, 3] see A048993, A154537, A282629,
A225466, A285061, A225467, respectively.

We also give the recurrence for S2fac(d, a;n,m) := S2(d, a;n,m)m!:

S2fac(d, a;n,m) = mdS2fac(d, a;n− 1,m− 1) + (a + dm)S2fac(d, a;n− 1,m), for n ≥ 1 , m = 0, 1, ..., n ,
(76)

with S2fac(d, a;n,−1) = 0, S2fac(d, a;n,m) = 0 for n < m and S2fac(d, a; 0, 0) = 1.

The e.g.f. of the row polynomials of S2fac[d, a] is
ea t

1 − x (ed t − 1)
. This is seen after interchanging the two sums

and using the e.g.f. of columns of S2[d, a].

For the instances [d, a] = [1, 0], [2, 1], [3, 1], [3, 2], [4, 1], ]4, 3] see A131689, A145901, A284861, A225472, A285066,
A225473, respectively.

2. Proof of eq. (13), i.e., eq. (12)

The Sheffer structure eq. (12) means that the column e.g.f. of the S2[d, a] number triangle satisfies eq. (13). The
column e.g.f. ES2Col(d, a; t,m) is here named E(t,m) for simplicity. The lower summation index in brackets can
be used instead of the given one because of the triangle structure of S2[d, a]. The recurrence is used in the first
step.

E(t,m) :=

∞∑

n=m(0)

S2(d, a;n,m)
tn

n!

= d
∞∑

n=0(1)

S2(d, a;n− 1,m− 1)
tn

n!
+ (a + dm)

∞∑

n=0(1)

S2(d, a;n− 1,m)
tn

n!

=

∫
dt

(
d

∞∑

n=1

S2(d, a;n− 1,m− 1)
xn−1

(n− 1)!
+ (a + dm)

∞∑

n=1

S2(d, a;n− 1,m)
tn−1

(n− 1)!

)

=

∫
dt (dE(t,m− 1) + (a + dm)E(t,m)) . (77)
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Differentiating both sides of the final equation produces a recurrence for E(t,m):

(
d

dt
− (a + dm)

)
E(t,m) = dE(t,m− 1) , (78)

with the input E(t, 0) = ea t because S2(d, a;n, 0) = an from the recurrence.

The solution of this differential difference equation, satisfying the input, is

E(t,m) ≡ ES2Col(d, a; t,m) = ea t

(
ed t − 1

)m

m!
, (79)

which is eq. (13).

3. Proof of eq. (14)

The o.g.f. of eq. (14) GS2Col(d, a;x,m) ≡ G(x,m) for short in this proof, is shown to lead to the e.g.f.

ES2Col(d, a; t,m) ≡ E(t,m) of eq. (13) via the inverse Laplace transform, given in eq. (4).

Lemma 2:

m∏

j=0

1

x − (a + d j)
=

(
−1

d

)m
1

m!

m∑

j=0

(−1)j
(
m

j

)
1

x − (a + d j)
, for m ∈ N0 . (80)

Proof: This is a standard partial fraction decomposition for the rational function
1

P (x)
with P (x) a polynomial

of degree m + 1 with the simple roots αj = a + d j, j = 0, 1, ..., m.
1

P (x)
=

m∑

j=0

aj
x − (a + d j)

. Here

aj =
1

P ′(αj)
=

m∏

k=0, 6=j

1

αj − αk

=
1

dm

m∏

k=0, 6=j

1

j − k
=

1

dm
1

j! (−1)m−j (m− j)!
=

1

dm
1

m!
(−1)m−j

(
m

j

)
.

Now, due to the linearity of L−1, and the transform L−1

[
1

p − α

]
= eα t, one finds after application of Lemma 2,

and with the help of the binomial theorem:

E(t,m) = L−1

[
1

p
G

(
1

p
,m

)]
= L−1

[
dm∏m

j=0 (p − (a + d j))

]
=

(−1)m

m!

m∑

j=0

(−1)j
(
m

j

)
L−1

[
1

p − (a + d j)

]

=
(−1)m

m!
ea t

m∑

j=0

(
m

j

)
(−ed t)j =

ea t

m!
(1 − ed t)m (−1)m . (81)

which is indeed the e.g.f. given in eq. (13).

4. Proof of eq. (16) with eq. (17)

Lemma 3: Sheffer transform of a sequence

If the e.g.f. of sequence {bn}
∞
n=0 is B(t), the e.g.f. of sequence {an}

∞
n=0 is A(t), and the Sheffer transform of {an}

is bn =
∑n

m=0 S(n, m) an, with S Sheffer of type S = (g(t), f(t)) then

B(t) = g(t)A(f(t)) . (82)

The proof uses an exchange of the two summations and the e.g.f. of column m of S, i.e., g(t)
f(t)m

m!
.

Corollary 1:

The row polynomials PS(n, x) of a Sheffer matrix S = (g(t), f(t)) have e.g.f. EPS(t, x) = g(t) exf(t).
This is also called the e.g.f. of the triangle S.

That the fallfac(d, a;x,m) definition in eq. (17) can be rewritten in terms of the usual falling factorial xn is trivial.
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Lemma 4: E.g.f. of fallfac[d,a]

The e.g.f. of fallfac(d, a;x,m) (see eq. (17)) is

F (d, a;x, t) := 1 +

∞∑

m=1

fallfac(d, a;x,m)
tm

m!
= (1 + d t)

x−a

d . (83)

Proof: With the binomial theorem and the rewritten form of fallfac[d, a] in terms of the ordinary falling factorial
this is trivial.

Now eq. (16) is a Sheffer transform of the sequence {fallfac(d, a;x,m)}∞m=0, therefore, with Lemmata 3 and 4 the

e.g.f. of the r.h.s. of eq. (16) is, with the e.g.f. of Ŝ2 given in connection with eq. (15),

ea t F

(
d, a; t,

1

d
(ed t − 1)

)
= ea t

(
1 + (ed t − 1)

) x−a

d = ea t ed t x−a

d = et x, (84)

which is the e.g.f. of the sequence {xn}∞n=0 of the l.h.s. .

5. Meixner recurrence and recurrence for Sheffer row polynomials eq. (19)

a) Monic row polynomials s(n, x) of the Sheffer type (g(x), f(x)) satisfy the Meixner [20], p. 9, eqs. (4.1) and
(4.2), recurrence (f [−1] denotes the compositional inverse of f)

f [−1](dx) s(n, x) = n s(n− 1, x), with input s(0, x) = 1. (85)

For the proof see the original reference.

For PŜ2(d, a;n, x) =
∑n

m=0 Ŝ2(d, a;n,m)xm with f [−1](y) =
1

d
log(1 + y) one has

1

d

n∑

k=1

(−1)k+1

k

dk

dxk
PŜ2(d, a;n, x) = nP Ŝ2(d, a;n− 1, x), with input PŜ2(d, a; 0, x) = 1 . (86)

b) The standard recurrence for Sheffer row polynomials S(n, x) (not necessarily monic ones) is given in Roman

[22], p. 50, Corollary 3.7.2, which in our notation is

Lemma 5: (the differentiation is with respect to t)

S(n, x) =

[
x +

(
log(g(f [−1](t)))

)′] 1

f [−1](t)′

∣∣∣∣
t=dx

S(n− 1, x), for n ∈ N , (87)

and input S(0, x) = 1.

For PS2(d, a;n, x) of eq. (19) f [−1](t) = 1
d
log(1 + t), f [−1](t)′ = 1

d
1

1+ t
, g(t) = ea t and

(
log(g(f [−1](t)))

)′
=

a
d

1
1+ t

, leading to PS2(d, a;n, x) = [x d (1 + t) + a]|t=dx
PS2(d, a;n− 1, x), which his eq. (19),

6. Proof of eqs. (23) to (25)

Multiplication of eq. (23) with (1 − x)n+1 and the binomial formula gives

n∑

i=0

a
(n)
i xi =

n∑

j=0

b
(n)
j xj (1 − x)n−j =

n∑

j=0

b
(n)
j

n−j∑

k=0

(−1)k
(
n− j

k

)
xk+j

=
n∑

i=0

xi


∑

j=0

b
(n)
j (−1)i−j

(
n− j

i− j

)
 , (88)

where in the last step a new summation index i = k + j has been used instead of k, and the upper summation
index j is determined by the binomial as min(n, i) = i, because 0 ≤ i ≤ n. Comparing the coefficients of the

powers xi, for i = 1, 2, ..., n, leads then to eq. (24) for a
(n)
i .

The inverse relation, eq. (25), uses the following binomial identity (see [9], p. 169. eq. (5.24) with k → p,
m = s = 0, l → n− k, n → n − j)

∑

p≥ 0

(−1)p
(
n− k

p

)(
p

n− j

)
= (−1)n−k

(
0

k − j

)
= (−1)n−k δk,j , (89)
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with the Kronecker symbol δj,k = 1 if j = k, and 0 otherwise.

In the r.h.s. of eq. (25), with a
(n)
i from eq. (24) inserted, the two finite sums are interchanged, a new summation

index p = n− i is used instead of i, and finally the preceding binomial identity is employed.

j∑

i=0

(
n− i

j − i

)
a
(n)
i =

j∑

i=0

(
n− i

j − i

) i∑

k=0

(−1)i−k b
(n)
k

(
n− k

i− k

)
=

j∑

k=0

(−1)i−k b
(n)
k

(
j∑

i=k

(
n− i

n− j

)(
n− k

n− i

))

=

j∑

k=0

(−1)n−k b
(n)
k




n−k∑

p=n−j

(−1)p
(
n− k

p

)(
p

n− j

)
 = b

(n)
j . (90)

7. Proof of eqs. (26) to (28)

This follows by using in eq. (21) eqs. (23) with b
(n)
j = S2(d.a;n, j) j! and eq. (24). Then a

(n)
k = rEu(d, a;n, k) is

obtained as given in eq. (28).

8. Proof of eq. (29)

This is eq. (25) (replacing i → k) with b
(n)
j and a

(n)
k as given in the previous proof.

9. Proof of eq. (30)

This uses the binomial identity (see [9], p. 169, eq. (5.26) with k → j, q → 0, m → n− k, l → n and n → l)
k∑

j=l

(
n− j

n− k

)(
j

l

)
=

(
n+ 1

n− k + l + 1

)
=

(
n+ 1

k − l

)
. (91)

Insertion of eq. (11) into eq. (28) followed by an interchange of the two sums and application of the binomial identity
leads to

rEu(d, a;n, k) =
k∑

j=0

(−1)k−j

(
n− j

k − j

) j∑

l=0

(−1)j−l

(
j

l

)
(a + d l)n =

k∑

l=0

(−1)k−l (a + d l)n
k∑

j=l

(
n− j

n− k

)(
j

l

)

=

k∑

l=0

(−1)k−l (a + d l)n
(
n+ 1

k − l

)
=

k∑

j=0

(−1)k−j

(
n+ 1

k − j

)
(a + d j)n . (92)

For the rEu[d, a] triangles with [d, a] = [1, 0], [2, 1], [3, 2], [4, 3] see A123125, A060187, A225117, A225118, respec-
tively. The case rEu[3, 1] is the row reversed version of rEu[3, 2], and rEu[4, 1] is the row reversed version of

rEu[4, 3], In general this row reversion relation holds between rEu[d, d − a] and rEu[d, a], for a = 1, ...,

⌊
d

2

⌋
for

gcd(d− a, a) = 1.

10. Proof of eq. (31)

Like eq. (6) one has for GP (d, a;n, x) of eq. (20)

GP (d, a;n, x) =
n∑

k=0

(
n

k

)
an−k dk GP (k, x) , (93)

with GP (k, x) = GP (1, 0; k, x). However, this does not lead immediately to the desired formula for rEu(d, a;n, k)
in terms of the usual Eulerian numbers rEu(n, k) claimed in eq. (31). The proof is done by inserting S2[d, a] from
eq. (18) into eq. (28), then replacing the usual S2 by rEu via eq. (29) for [d, a] = [1, 0]. Here two binomial identities
are needed. The first is given in [9], p. 169, eq. (5.25) (with k → j, s → m− i, n → i, l → n, and m → n− k).
Here one needs n − k ≥ 0 and the upper summation index which would be n can be replaced by k because for
j = k = 1, ..., n the first binomial vanishes because the upper non-negative number is then smaller than the lower
one.

k∑

j=i

(−1)j
(
n− j

n− k

)(
m− i

j − i

)
= (−1)k

(
m− n+ k − i− 1

k − i

)
= (−1)k

(
−(n−m− (k − i) + 1)

k − i

)
= (−1)i

(
n−m

k − i

)
.

(94)
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In the last step another identity, given in [9], p. 164, eq. (5.14), has been used.(
−r

p

)
= (−1)p

(
p− 1 + r

p

)
. (95)

Now

rEu(d, a;n, k) =

k∑

j=0

(−1)k−j

(
n− j

k − j

)
S2(d, a;n, j) j! =

k∑

j=0

(−1)k−j

(
n− j

k − j

) n∑

m=0

(
n

m

)
an−m dm S2(m, j) j!

=

k∑

j=0

(−1)k−j

(
n− j

k − j

) n∑

m=0

(
n

m

)
an−m dm

j∑

i=0

(
m− i

j − i

)
rEu(m, i)

=

n∑

m=0

(
n

m

)
an−m dm

k∑

i=0

(−1)k rEu(m, i)

k∑

j=0

(−1)j
(
n− j

n− k

)(
m− i

j − i

)

=

n∑

m=0

(
n

m

)
an−m dm

k∑

i=0

(−1)k rEu(m, i) (−1)i
(
n−m

k − i

)
, (96)

which is eq. (31) with summation index p → i.

11. Proof of eq. (32)

We show that eq. (30) satisfies the three term recurrence eq. (31). The l.h.s. of the recurrence is

rEu(d, a;n,m) =

m∑

j=0

(−1)m−j

(
n+ 1

m− j

)
(a + d j)n . (97)

The r.h.s. of the recurrence is

(d (n−m) + (d − a))

m−1∑

j=0

(−1)m−j−1

(
n

m− 1− j

)
(a + d j)n−1

+(a + dm)
m∑

j=0

(−1)m−j

(
n

m− j

)
(a + d j)n−1

=
m∑

j=0

(−1)m−j

(
n+ 1

m− j

)
(a + d j)n−1

[
−(d (n−m) + (d − a))

(
n

m−1−j

)
(
n+1
m−j

) + (a + dm)

(
n

m−j

)
(
n+1
m−j

)
]
. (98)

In the first sum the upper index m−1 has been extended to m because the extra term vanishes due to the binomial.
The terms in the bracket are shown to become a + d j as follows.

[...] = −(d (n−m) + (d − a))
n! (m− j)!

(m− 1− j)! (n+ 1)!
+ (a + dm)

n!(n+ 1−m+ j)!

(n−m+ j)! (n+ 1)!

=
1

n+ 1
(−(d (n−m) + (d − a)) (m− j) + (a + dm) (n−m+ j + 1))

=
1

n+ 1
(d j (n+ 1) + a (n+ 1)) = a+ d j . (99)

12. Proof of eq. (34)

From eq. (21) and the row polynomial definition of PS2fac we have

GP (d, a;n, x) =
1

1− x

n∑

k=0

S2(d, a;n, k) k!

(
x

1− x

)k

= =:
1

1− x
PS2fac

(
d, a;n,

x

1− x

)
. (100)

Therefore, from eq. (26),

1

1− x
PS2fac

(
d, a;n,

x

1− x

)
=

1

(1 − x)n+1
PrEu(d, a;n, x) , (101)
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which is eq. (34) for x 6= 1. But eq. (34) holds also for x = 1, with the row sums PrEu(d, a;n, 1) =

S2fac(d, a;n, n). From eq. (14) one has S2fac(d, a;n, n) = [xn] (n!GS2Col(d, a;x, n)) = dn n! with e.g.f.
1

1 − d t
,

independently of a. These sequences are, for d = 1, 2, ..., 5, A000142, A000165, A032031, A047053, A052562 .

13. Proof of eq. (35)

With eq. (34) and the Sheffer structure of S2[d, a] (eq. (13) for the column e.g.f. , here in the variable (1 − x) z)

EPrEu(d, a; t, x) :=
∞∑

n=0

tn

n!
PrEu(d, a;n, x) =

∞∑

n=0

(t (1− x))n

n!

n∑

m=0

S2(d, a;n,m)m!

(
x

1− x

)m

=

∞∑

m=0

(
x

1− x

)m ∞∑

n=m(0)

(t (1− x))n

n!
S2(d, a;n,m)m!

= ea (1−x) t
∞∑

m=0

(
x

1− x

)m
(ed (1−x) t − 1)m

m!
m!

= ea (1−x) t 1

1 − x
1−x

(ed (1−x) t − 1)
=

(1− x) ea (1−x) t

1 − x ed (1−x) t
. (102)

The limit x → 1 via l’Hôpital’s rule leads to the e.g.f.
1

1 − d t
for the row sums of rEu[d, a], as found also in the

preceding proof.

14. Proof of eq. (39)

One obtains b
(n+1)
j of eq. (37) from eq. (25) (with n → n + 1) with a

(n+1)
i given in eq. (38). We omit the (d, a)

labels here. Remember that a
(n+1)
n+1 = 0 (but b

(n+1)
n+1 does not vanish).

b
(n+1)
j =

j∑

i=0

(
n+ 1− i

j − i

)
a
(n+1)
i =

j∑

i=0

(
n+ 1− i

j − i

) i∑

p=0

(−1)i−p

(
n+ 1

i − p

)
(a + d p)n . (103)

It is convenient to consider the case j = 0 separately.

b
(n+1)
0 = a

(n+1)
0 = an, n ∈ N0 . (104)

For j = 1, 2, ..., n+ 1 we have after exchange of the sums

b
(n+1)
j =

j∑

p=0

(−1)p (a + d p)n
j∑

i=p (0)

(−1)i
(
n+ 1− i

n+ 1− j

)(
n+ 1

i− p

)
. (105)

Because of the second binomial one could start the sum with i = 0. Now the binomial identity used already above
in the first step of eq. (95), is employed with j → i, i → p, n → n + 1, k → j, m → p + n + 1. In the first
binomial the lower number is non-negative and the original upper sum index n + 1 can be replaced by j because
for i = j + 1, ..., n+ 1 the upper non-negative number in the first binomial becomes smaller then the lower one.

b
(n+1)
j =

j∑

p=0 (1)

(−1)p (a + d p)n (−1)j
(
j − 1

j − p

)
. (106)

Because j ≥ 1 one can use the symmetry of the binomials (this is why we have separated the j = 0 case).

b
(n+1)
j =

j∑

p=0

(−1)j−p

(
j − 1

p− 1

)
(a + d p)n . (107)

The identification with the ΣS2[d, a] as claimed in eq. (39) is achieved by using the Pascal recurrence (see A007318).

j∑

p=0

(−1)j−p

(
j − 1

p− 1

)
(a + d p)n = −

j∑

p=0

(−1)j−p

(
j − 1

p

)
(a + d p)n +

j∑

p=0

(−1)j−p

(
j

p

)
(a + d p)n

= +S2(d, a;n, j − 1) (j − 1)! + S2(d, a;n, j) j! , (108)

where eq (11) has been used. Now the j = 0 result an is also covered because S2(d, a;n, 0) = an and S2(d, a;n,−1)∗
(−1)! is taken as vanishing (S2(d, a;n,−1) = 0 from the recurrence eq. (10)).
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15. Proof of eq. (40)

Putting things together, the e.g.f. of {PS(d, a;n,m)}∞m=0 (see eq. (1)) becomes via inverse Laplace transform of
eq. (2)

EPS(d, a;n, t) :=
∞∑

m=0

PS(d, a;n,m)
tm

m!
= L−1

[
1

p
GPS

(
d, a;n,

1

p

)]
, (109)

and from eq. (36) with eqs. (27), (38) and (37)

1

p
GPS

(
d, a;n,

1

p

)
=

n+1∑

j=0

b
(n+1)
j (d, a)

1

p

1

pj
1

(
1 − 1

p

)j+1 =

n+1∑

j=0

b
(n+1)
j (d, a)

1

(p − 1)j+1
. (110)

Thus, by linearity of L−1, and the formula before eq. (22), one obtains

EPS(d, a;n, t) = et
n+1∑

j=0

b
(n+1)
j (d, a)

tj

j!
, (111)

which become finally eq. (40) after insertion of b
(n+1)
j (d, a) from eq. (39).

B) Proofs of section 1B

1. Proof of eq. (47)

Insertion of eq. (18) into eq. (46) leads after interchange of the two finite sums to

B(d, a;n) =

n∑

k=0

(
n

k

)
an−k dk

n (k)∑

m=0

(−1)m
1

m+ 1
S2(k, m)m! , (112)

where in the second sum the upper index can be taken as k instead of n because S2(k, m) = 0 for m > k, and
k ≤ n from the first sum. Then the second sum is equal to B(k) by eq. (46) for [d, a] = [1, 0]. This is then eq. (47).

For the B[d, a] numbers for [d, a] = [1, 0], [2, 1], [3, 1], [4, 1], [5, 1], [5, 2] see A027641/A027642, A157779/A141459,
A157799/A285068, A157817/A141459, A157866/A288872, A157833/A288872, respectively.
B[3, 2](n) = (−1)nB[3, 1](n), B[4, 3](n) = (−1)nB[4, 1](n), B[5, 3](n) = (−1)nB[5, 2](n), and B[5, 4](n) =
(−1)nB[5, 1](n).

2. Proof of eq. (48)

The e.g.f. of {B(d, a;n)}∞n=0 is obtained from the defining eq. (46) recognizing, after exchange of the sums, the
e.g.f. ES2Col(d, a; t,m) of eq. (13):

EB(d, a; t) :=
∞∑

n=0

B(d, a;n)
tn

n!
=

∞∑

n=0

tn

n!

n∑

m=0

(−1)m
m!

m+ 1
S2(d, a;n,m)

=

∞∑

m=0

(−1)m
m!

m+ 1

∞∑

n=m

tn

n!
S2(d, a;n,m) =

∞∑

m=0

(−1)m
1

m+ 1
ea t (ed t − 1)m

= ea t 1

y

∞∑

m=0

ym+1

m+ 1
(with y := 1 − ed t) = ea t 1

y

∫
dy

∞∑

m=0

ym = ea t 1

y

∫
dy

1− y

= ea t 1

−y
log(1− y) =

d t ea t

ed t − 1
. (113)

3. Proof of eq. (50)

This follows from inserting into eq. (49) (with n −m = p) eq, (47), using the binomial identity (see [9], p. 174.

Table 174. the trinomial revision formula)

(
n

p

)(
p

m

)
=

(
n

m

)(
n−m

p−m

)
and interchange of the sums. Then the

binomial formula is used.
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B(d, a;n, x) =

n∑

p=0

(
n

p

)
B(d, a; p)xn−p =

n∑

p=0

(
n

p

)
xn−p

p∑

m=0

(
p

m

)
ap−m dmB(m)

=

n∑

p=0

p∑

m=0

(
n

m

)(
n−m

p−m

)
xn−p ap−m dmB(m) =

n∑

m=0

(
n

m

)
a−m dmB(m)

n∑

p=m

(
n−m

p−m

)
xn−p ap

=

n∑

m=0

(
n

m

)
a−m dmB(m)

n−m∑

p=0

(
n−m

p

)
xn−(p+m) ap+m

=
n∑

m=0

(
n

m

)
dmB(m)

n−m∑

p=0

(
n−m

p

)
x(n−m)−p ap =

n∑

m=0

(
n

m

)
dmB(m) (a + x)n−m . (114)

4. Proof of eq. (51)

Eq. (49) is an exponential (also called binomial) convolution of the sequences {B(d, a;n)}∞n=0 and {xn}∞n=0, hence

the product of their e.g.f.s is with eq. (48) EB(d, a; t) ex t =
d t e(a+x) t

ed t − 1
.

Alternatively one can take the exponential convolution of eq. (50) of {dmB(m)}∞m=0 with e.g.f.
d t

ed t − 1
and

{(a + x)n}∞n=0 with e.g.f. e(a+x) t, and their product is eq. (51).

5. Proof of eq. (57)

This proof will be rather lengthy. It will need the following simple Lemma.

Lemma 6: If the e.g.f. of the sequence {Cn}
∞
n=0 is C(t) then the e.g.f. of the sequence

{
Cn+1

n+ 1

}∞

n=0

is
1

t
(C(t) − C0)

.

Proof:
∞∑

n=0

Cn+1

n+ 1

tn

n!
=

1

t

∞∑

n=0

Cn+1
tn+1

(n+ 1)!
=

1

t
(C(t) − a0) . (115)

We compute the o.g.f. of the first two terms of the claimed Faulhaber formula eq. (57) multiplied by d (n+ 1)

d (n+ 1)G(d, a;n, x) :=

∞∑

m=0

xm {B(d;n+ 1, x = a+ d (m+ 1)) − B(d;n+ 1, x = d)} , (116)

with the polynomials B(d;n, x) from eq. (52) which are inserted with summation index k = n−m instead of m.
The two terms with k = n+ 1 will be separated and they cancel. Then the sums will be interchanged.

d (n+ 1)G(d, a;n, x) =

∞∑

m=0

xm

{
n∑

k=0

(
n+ 1

k

)
B(d; k) (a + d (m+ 1))n+1−k −

n∑

k=0

(
n+ 1

k

)
B(d; k) dn+1−k

}

=

n∑

k=0

(
n+ 1

k

)
B(d; k)

{(
∞∑

m=0

(a + d (m+ 1))n+1−k xm

)
−

1

1− x
dn+1−k

}
. (117)

The last term in the curly bracket simplifies with B(d; k) = dk B(k) from eq. (53), and with eq. (43) rewritten as

n∑

k=0

(
n+ 1

k

)
B(k) = δn,0 , (118)

to −
d

1 − x
δn,0.

In the remaining double sum one uses the o.g.f. of sums of powers (see eqs. (20) and (21)) after an index shift
m → m− 1, then one adds and subtracts the new m = 0 term. Thus,

d (n+ 1)G(d, a;n, x) =

n∑

k=0

(
n+ 1

k

)
B(d; k)

1

x

(
GP (d, a;n+ 1− k, x) − an+1−k

)
−

d

1 − x
δn,0

=

n∑

k=0

(
n+ 1

k

)
B(d; k)

[
−
an+1−k

x
+

n+1−k∑

m=0

S2(d, a;n+ 1− k,m)m!
xm−1

(1 − x)m+1

]

−
d

1 − x
δn,0 . (119)
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The term with S2[d, a] will now be treated separately as d (n+ 1)G1(d, a;n, x) and the remainder
d (n+1)G2(d, a;n, x) will be added later. In d (n+1)G1(d, a;n, x) a new summation index k′ = n+1− k is used
(called then again k), and the m = 0 sum term will be separated in order to have in both sums the same offset 1.

d (n+ 1)G1(d, a;n, x) =
n+1∑

k=1

(
n+ 1

k

)
B(d;n+ 1− k)

(
k∑

m=1

S2(d; a; k,m)m!
xm−1

(1 − x)m+1
+

ak

x (1 − x)

)

=: d (n+ 1)G11(d, a;n, x) + d (n+ 1)G12(d, a;n, x) . (120)

The m = 0 term d (n+1)G12(d, a;n, x) will be added later, and the for the first term we have the following Lemma.

Lemma 7:

G11(d, a;n, x) = GPS(d, a;n, x) , (121)

which is the o.g.f. given in eq. (2) of the object of desire PS(d, a;n,m), i.e., the l.h.s. of the Faulhaber formula
eq. (57).

Proof: The two sums are exchanged, and in the m-sum a shift m → m+ 1 will be applied.

G11(d, a;n, x) =
1

d (n+ 1)

n+1∑

m=1

xm−1

(1− x)m+1

n+1∑

k=m

(
n+ 1

k

)
B(d;n+ 1− k)S2(d, a; k,m)m!

=

n∑

m=0

xm

(1− x)m+2

1

d (n+ 1)

n+1∑

k=m+1

(
n+ 1

k

)
B(d;n+ 1− k)S2(d, a; k,m+ 1)(m+ 1)! .(122)

The k-sum will be called Cn+1 ≡ C(d, a;n + 1,m + 1). Now Lemma 6 is used to compute the e.g.f. of{
Cn+1

d (n+ 1)

}∞

n=0

. Because Cn =

n∑

k=0

(
n

k

)
B(d;n − k)S2(d, a; k,m + 1)(m + 1)! (the sum can start with k = 0

because S2(d, a, k,m + 1) vanishes for k < m + 1) is an exponential convolution, the e.g.f. of {Cn}
∞
n=0 is the

product of EB(d; t) from eq. (55) and the e.g.f. ES2Col(d, a; t,m+ 1) multiplied by (m+ 1)!, hence

d t

ed t − 1
· ea t (ed t − 1)m+1 = d t ea t (ed t − 1)m . (123)

Thus, the e.g.f. of

{
Cn+1

d (n+ 1)

}∞

n=0

is, by Lemma 6, ea t (ed t − 1)m because C0 = C(d, a; 0,m + 1) =

B(d; 0)S2(d, a; 0,m + 1)(m + 1)! = 0, since S2(d, a; 0,m + 1) = 0 for m ≥ 0. But this is the e.g.f. of
{S2(d, a;n,m)m!}∞n=0, and therefore

G11(d, a;n, x) =

n∑

m=0

xm

(1− x)m+2
S2(d, a;n,m)m! = GPS(d, a;n, x) . (124)

In the last step eq. (8) was used.

If all terms of G1 and G2 are added we have

G(d, a;n, x) = GPS(d, a;n, x) +
1

d (n+ 1)

[
1

x (1− x)

n+1∑

k=1

(
n+ 1

k

)
B(d;n+ 1− k) ak

−

n∑

k=0

(
n+ 1

k

)
B(d; k)

an+1−k

x
−

d

1− x
δn,0

]
. (125)

In the second sum an index change k′ = n+ 1− k leads to

G(d, a;n, x)−GPS(d, a;n, x) =
1

d (n+ 1)

[(
1

x (1 − x)
−

1

x

) n+1∑

k=1

(
n+ 1

k

)
B(d;n+ 1− k) ak −

d

1− x
δn,0

]

=
1

d (n+ 1)

1

1− x

[
n+1∑

k=1

(
n+ 1

k

)
B(d;n+ 1− k) ak − d δn,0

]

=
1

d (n+ 1)

1

1− x

[
n+1∑

k=0

(
n+ 1

k

)
B(d;n+ 1− k) ak − B(d;n+ 1) − d δn,0

]

=
1

d (n+ 1)

1

1− x
[B(d;n+ 1, x = a) − B(d;n+ 1, x = 0) − d δn,0] . (126)
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In the last step the polynomials of eq. (52) have been identified. If now the definition G(d, a;n, x) in eq. (116) is
remembered, and the coefficient [xm] of this o.g.f. is picked one finds after this tour de force the Faulhaber formula
eq. (57).

C) Proofs of section 1C

1. Proof of eq. (59)

In the Sheffer group of (infinite) lower triangular matrices the inverse element of S = (g(x), f(x)) ≡ (g, f) is

S−1 =

(
1

g(f [−1](y))
, f [−1](y)

)
≡

(
1

g ◦ f [−1]
, f [−1]

)
(127)

with the compositional inverse f [−1] of f , i.e., f(f [−1](y)) = y, or f [−1](f(x)) = x, identically. Here f(x) = x f̂(x)

with f̂(0) 6= 0.

For the Sheffer matrix S2[d, a] one has g(x) = eax and f(x) = ed x − 1, hence f [−1](y) =
1

d
log(1 + y), and

S1[d, a] := (S2[d, a])−1 =

(
(1 + y)−

a

d ,
1

d
log(1 + y)

)
. (128)

This matrix has in general fractional integer entries. The unsigned matrix S1p[d, a] ≡ |S1[d, a]| (p for non-negative)
has elements S1p(d, a;n,m) = (−1)n−m S1(d, a;n,m) because then the e.g.f. for column m becomes

ES1p(d, a; t,m) = (1− t)−
a

d

(
− 1

d
log(1 − t)

)m

m!
, (129)

and both (formal) power series have non-negative elements which are in general fractional numbers.

For combinatorial considerations one is interested in non-negative integer matrices. Therefore, a scaling of the rows
is performed: Ŝ1p(d, a;n,m) := dn S1p(d, a;n,m) which leads to diagonal elements 1, and the Sheffer matrix is

Ŝ1p[d, a] =

(
(1 − d y)−

a

d , −
1

d
log(1 − d y)

)
, (130)

because the scaling leads to t → d t in ES1p(d, a; t,m). The new power series generate exponentially non-negative

integers, because

[
xn

n!

]
(1 − d y)−

a

d =
(a
d

)n
dn =

n−1∏

j=0

(a + d j) = risefac(d, a; 0, n) (see eq. (63) for the risefac

definition), and

[
xn

n!

] (
−
1

d
log(1 − d y)

)
= (n− 1)! dn−1 for n ≥ 1 (and 0 for n = 0).

2. Proof of eq. (61)

The three term recurrence of the Ŝ1p[d, a] can be obtained from the e.g.f. of their column sequences

EŜ1pCol(d, a; t,m) given in eq. (60) which we abbreviate for this proof as Ep(t,m).

Lemma 8:

(1− d t)
d

dt
Ep(t,m) = aEp(t,m) + Ep(t,m− 1) for m ∈ N , (131)

and the input is Ep(t, 0) = (1 − d t)−
a

d .

Proof: This is elementary with eq. (60).

Now the recurrence eq. (61) is seen to satisfy this Lemma.

Ep(t,m) =

∞∑

n=0

tn

n!
Ŝ1p(d, a;n,m)

=

∞∑

n=0 (1)

tn

n!
Ŝ1p(d, a;n− 1,m− 1) +

∞∑

n=0 (1)

tn

n!
(dn − (d− a)) Ŝ1p(d, a;n− 1,m)

=

∞∑

n=0

tn+1

(n+ 1)!
Ŝ1p(d, a;n,m− 1) +

∞∑

n=0

tn+1

(n+ 1)!
(d (n+ 1) − (d− a)) Ŝ1p(d, a;n,m)

=

∫
dtEp(t,m− 1) + d tEp(t,m) − (d− a)

∫
dtEp(t,m) . (132)

20



In the second line the two sums actually start with n = 1 because Ŝ1p[d, a] vanishes for negative row indices. This
is a integral-difference equation with input Ep(t, 0) as given in the Lemma.

(1 − d t)Ep(t,m) =

∫
dt (Ep(t,m− 1) − (d − a)Ep(t,m)) . (133)

Differentiation produces precisely the equation of the Lemma.

3. Proof of eq. (62)

The row polynomials of Sheffer triangles are a Sheffer transform of the monomials {xn}∞n=0. Therefore, with Lemma

3, eq. (82), the e.g.f. of the (ordinary) row polynomials of Ŝ1p[d, a] is obtained from the e.g.f. of Ŝ1p[d, a] given
by eq. (59) and ex t, i.e.,

EPŜ1p(d, a; t, x) :=

∞∑

n=0

PŜ1p(d, a;n, x)
tn

n!
= (1 − d t)−

a

d exp(x (−
1

d
log(1− d t))) = (1 − d t)−

x+a

d . (134)

Then the binomial theorem leads to

EPŜ1p(d, a; t, x) =

∞∑

n=0

tn

n!
(−d)n

(
−
x+ a

d

)n

=

∞∑

n=0

tn

n!
risefac(d, a;x, n) , (135)

where in the first equation the usual falling factorial xn :=
∏n−1

j=0 (x− j) appeared, and in the second equation the
definition eq. (63) for risefac(d, a;x, n) has been used in the rewritten form using ordinary falling factorials.

In this way we have found, as a corollary, the e.g.f. of {risefac(d, a;x, n)}∞n=0 to be (1 − d t)−
x+a

d .

The fallfac[d, a] analogon is obtained from inverting eq. (16) using the inverse of the scaled Ŝ2[d, a] Sheffer matrix,

i.e., the signed Ŝ1[d, a] matrix.

fallfac(d, a;x, n) =

n∑

m=0

Ŝ1(d, a;n,m)xm . (136)

These are the row polynomials of Ŝ1[d, a].

4. Lah[d,a]

It is tempting to give here the generalized unsigned Lah matrix L[d, a] as transition matrix between risefac[d, a]
and fallfac[d, a].

For the ordinary [d, a] = [1, 0] Lah triangle see A271703 (or A008297 with n ≥ m ≥ 1) and [9], exercise 31, p.
312, solution p. 552.

The generalization is

risefac(d, a;x, n) =

n∑

m=0

L(d, a;n,m) fallfac(d, a;x,m) . (137)

From eq. (62) and eq. (16) one has, in matrix notation

L[d, a] = Ŝ1p[d, a] · Ŝ2[d, a] . (138)

We quote a Lemma on the multiplication law of the Sheffer group.

Lemma 9:

If the product of two Sheffer matrices with S1 = (g1, f1) and S2 = (g2, f2) is S3 = S1 · S2 with S3 = (g3, f3)
then

g3 = g1 (g2 ◦ f1) , f3 = (f2 ◦ f1) , i.e., g3(t) = g1(t) g2(f1(t))) , f3(t) = f2(f1(t)) . (139)

This is standard Sheffer lore.

With eq. (59) and the statement just before eq. (15) this implies the Sheffer structure

L[d, a] =

(
(1 − d t)−

2 a

d ,
t

1 − d t

)
. (140)
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The proof of an explicit form along the lines of the mentioned exercise in [9] does not immediately lead to an

explicit form for L(d, a;n,m) if a 6= 0. See also the complicated form of eq. (69) for Ŝ1p[d, a]. Of course the
matrix product can be written with the help of eq. (64) or eq. (65) and eq. (11).

The e.g.f. of the column sequences is

ELCol(d, a; t,m) = (1 − d t)−
2 a

d

1

m!

(
t

1 − d t

)m

, m ∈ N0 . (141)

From the so called a− and z−sequences for Sheffer matrices (see the link [16], where also references are given. This
link is found also in A006232) one finds recurrence relations. The e.g.f.s of these sequences are (g and f are those
of eq. (140)

a(y) =
y

f [−1](y)
= 1 + d y = a(d; y) ,

z(y) =
1

f [−1](y)

(
1 −

1

g(f [−1](y))

)
=

1 + d y

y

(
1 − (1 + d y)−

2 a

d

)
= z(d, a; y) . (142)

This means that there is always a three term recurrence for the matrix entries L(d, a;n,m) for n ≥ m ≥ 1 because
the a−sequence is {1, d, repeat(0)} i.e.,

L(d, a;n,m) =
n

m
L(d, a;n− 1,m− 1) + nL(d, a;n− 1,m) n ∈ N, m = 1, 2, ..., n , (143)

where the input from column m = 0, besides L(d, a; 0, 0) = 1, can be taken form the e.g.f. eq. (141).

In general one can use the z−sequence for column m = 0 in combination with the given recurrence eq. (143). For
[d, a] = [1, 0] where the z−sequence vanishes, them = 0 column becomes directly {1, repeat(0)}. For [d, a] = [2, 1]
the z−sequence becomes {2, repeat(0)}, and the column m = 0 is also given directly as A000165. All other cases
need also lower row entries with m ≥ 1.

In this special L[d, a] case one can, however, derive from the column e.g.f. eq. (114) a four term recurrence, i.e.,

L(d, a;n,m) = L(d, a;n− 1,m− 1) + 2 (a + d (n− 1))L(d, a;n− 1,m)

− d (n− 1) (2 a + d (n− 2))L(d, a;n− 2,m) , (144)

with inputs L(d, a; 0, 0) = 1, L(d, a;n,−1) = 0, L(d, a;−1,m) = 0, and L(d, a;n,m) = 0 if n < m.

Proof: This uses the definition of ELCol(d, a; t,m) :=
∞∑

n=m (0)

L(d, a;n,m)
tn

n!
, and the trivial result

(1− d t)2
d

dt
ELCol(d, a; t,m) = 2 a (1 − d t)ELCol(d, a; t,m) + ELCol(d, a; t,m− 1) . (145)

The recurrence follows then by comparing powers of
tn

n!
, sending n → n− 1.

The Meixner type recurrence for the row polynomials (see eq. (85)) is

dx

1 + ddx

PL(d, a;n, x) = nPL(d, a;n− 1, x) , n ∈ N , (146)

and input PL(d, a; 0, x) = 1. The series terminates and this becomes

n−1∑

k=0

(−1)d dk dk+1
x PL(d, a;n, x) = nPL(d, a;n− 1, x) . (147)

The general Sheffer polynomial recurrence (see eq. (87) for the rewritten Roman corollary) is

PL(d, a;n, x) =
(
(2 a + x)1 + 2 d (a + x)dx + d2 xd2

x

)
PL(d, a;n− 1, x) , n ∈ N, (148)

and input PL(d, a; 0, x) = 1.

The inverse matrix of L[d, a] is also of interest:
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fallfac(d, a;x, n) =

n∑

m=0

L−1(d, a;n,m) risefac(d, a;x,m) . (149)

From eq. (127) one finds the Sheffer structure

L−1[d, a] =

(
1

(1 + d t)
2 a

d

,
t

1 + d t

)
= (gL(−t), −fL(−t)) , (150)

where gL and fL are taken from eq. (140).

This means, by looking at the column e.g.f.s of Sheffer matrices, that the inverse matrix is just obtained by properly
signing the L[d, a] matrix entries.

L−1(d, a;n, m) = (−1)n−m L(d, a;n, m) , n ≥ m ≥ 0 . (151)

The explicit from of gL−1[d, a] and fL−1[d, a] shows that one has to replace in the L[d, a] recurrence formulae
a → −a and d → −d.

The a− and z−sequences are then aL−1(d) = {1, −d, repeat(0)} and the e.g.f. for zL−1 is zL−1(d, a; y) =
1 − d y

y

(
1 − (1 − d y)−

2 a

d

)
= −z(d, a;−y) (with z(d, a; y) from eq. (142)). This gives a three term recurrence

for L−1(d, a;n,m) for n > m > 1 with the column m = 0 as input.

The recurrence derived like above from the column e.g.f. is just eq. (144) with replacements a → −a and d → −d

L−1(d, a;n,m) = L−1(d, a;n− 1,m− 1) − 2 (a + d (n− 1))L−1(d, a;n− 1,m)

− d (n− 1) (2 a + d (n− 2))L−1(d, a;n− 2,m) , (152)

with inputs L−1(d, a; 0, 0) = 1, L−1(d, a;n,−1) = 0, L−1(d, a;−1,m) = 0, and L−1(d, a;n,m) = 0 if n < m.

The Meixner type recurrence for the row polynomials of L−1 is like the one in eq. (147) wit replacement d → −d

n−1∑

k=0

dk dk+1
x PL−1(d, a;n, x) = nPL−1(d, a;n− 1, x) , (153)

with input PL−1(d, a; 0, x) = 1.

The general Sheffer recurrence is like eq. (148) with replacement a → −a and d → −d.

PL−1(d, a;n, x) =
(
(x − 2 a)1 − 2 d (x − a)dx + d2 xd2

x

)
PL−1(d, a;n− 1, x) , n ∈ N, (154)

and input PL−1(d, a; 0, x) = 1.

5. Proof of eq.(64)

It is well known (Vieta’s theorem) that the coefficients of a monic polynomial P (n, x) =
∑n

m=0 pm xm of de-

gree n are given in terms of the n zeros xj , j = 1, ..., n, of P by pm = (−1)n−m σ
(n)
n−m(x1, x2, ..., xn) =

−σ
(n)
n−m(−x1, −x2, ..., −xn) with the elementary symmetric functions σn

n−m of degree n − m, and σ
(n)
0 = 1.

For the risefac(d, a;x, n) polynomials eq. (63) the zeros are xj = −(a + (j−1) d) = −aj−1, j = 1, ..., n proving

eq. (64) for the coefficients Ŝ1p(d, a;n,m).

6. Proof of eq. (65)

The second version is proved by using risefac(d, a;x, n) = dn
(
x + a

d

)n

(see eq. (63)) and the known result

(e.g., , [9], p. 263, eq. (6.11)) for S1p as transition matrix

xn =
n∑

k=0

S1p(n, k)xk, k ∈ N0 . (155)

Now, with the binomial formula,

risefac(d, a;x, n) = dn
n∑

k=0

S1p(n, k)

(
x + a

d

)k

=

n∑

k=0

dn−k S1p(n, k)

k∑

m=0

(
k

m

)
ak−m xm

=

n∑

m=0

xm
n∑

k=m

(
k

m

)
S1p(n, k) ak−m dn−k , (156)
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and the coefficient of xm is Ŝ1p(d, a;n,m) given in the second version of eq. (65) (with summation index k → j).
The first version of eq. (65) is obtained by changing j → n − j′, using then again j as summation index.

An alternative proof can be given using the recurrence risfac(d, a;x, n) = (x + (n−1) d + a) risefac(d, a;x, n−1)
with input risefac(d, a;x, 0) = 1. Then the Pascal recurrence (see A007318) and the known S1p recurrence (given
by eq. (61) for [d, a] = [1, 0]) are used.

7. Meixner type recurrence, and proof of eq. (66)

The Meixner type recurrence for the monic row polynomials PŜ1p(d, a;n, x) uses the compositional inverse of the

Sheffer f function which is
1

d
(1− e−d y) (see eq. (85)). Therefore, f [−1](dx)PŜ1p(d, a;n, x) = nP Ŝ1p(d, a;n−1, x)

becomes
n∑

k=1

(−1)k−1 d
k−1

k!
(dx)

k PŜ1p(d, a;n, x) = nP Ŝ1p(d, a;n− 1, x) , (157)

with input PŜ1p(d, a; 0, x) = 1.

The general Sheffer recurrence (see Lemma 5, eq. (87), also for the Roman reference) uses, with the Sheffer g and
the given f [−1] function,

g(f [−1](t)) = ea t,
d

dt
g(f [−1](t)) = a ea t,

d

dt
f [−1](t) = e−d t , (158)

leading to

PŜ1p(d, a;n, x) = (x + a) eddx PŜ1p(d, a;n− 1, x) = (x + a)PŜ1p(d, a;n− 1, x+ d), (159)

by Taylor’s theorem, and this proves eq. (66).

Proof of eq, (67)

This is covered by Corollary 1 (after eq. (82)).

Proof of eq. (69)

The direct way uses the inversion of eq. (18).

Lemma 10:

S2(n, m) =

(
−a

d

)n n∑

k=0

(−1)k
(
n

k

)
a−k S2(d, a; k,m) , for n ≥ m ≥ 0 . (160)

Proof: From the exponential convolution eq. (18) one has for the column e.g.f. ES2Col(d, a; t,m) =
ea tES2Col(d t,m) (see eq. (13)). This means (for d ∈ N) that

ES2Col(t,m) = e−
a

d
tES2Col

(
d, a;

t

d
,m

)
, (161)

which gives for S2(n, m) the exponential convolution leading to the assertion.

Then the proof of eq. (69) starts by inserting S1p(n j), in the second version of eq. (65), by Schlöhmilch’s formula,
eq. (68), with S2(n− j + k, k) from the Lemma, eq. (160):

Ŝ1p(d, a;n,m) =

n∑

j=m

(
j

m

)
aj−m dn−j (−1)n−j

n−j∑

k=0

(−1)k
(
n+ k − 1

j − 1

)(
2n− j

n− j − k

)
∗

∗

(
−a

d

)n−j+k n−j+k∑

l=0

(−1)l
(
n+ k − j

l

)
a−l dk Ŝ2(d, a; l, k) , (162)

where S2[d, a] has been replaced by Ŝ2[d, a] (see the line before eq. (15)). Collecting a and d powers and the signs
leads to eq. (69).

Another more complicated proof follows the one of the usual Schlöhmilch formula given in [3], p. 290. This uses
the Lagrange inversion theorem for powers of a (formal) power series.
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Lemma 11: Lagrange theorem and inversion [8], p. 523, eq. (29), [24], p. 133.

a) With f̃(x) = f(y(x)), y(x) = a + xϕ(y) (here as formal power series)

f̃(x) = f(a) +

∞∑

n=1

xn

n!

dn−1

dan−1
[ϕn(a) f ′(a)] . (163)

b) With a = 0, y = xψ(x), and f(y) = yk, k ∈ N0 and x(y) = y[−1](y) (compositional inverse)

xk(y) = δk,0 + k

∞∑

n=1

yn

n!

dn−1

dtn−1

[(
1

ψ(t)

)n

tk−1

]∣∣∣∣
t=0

= δk,0 +

∞∑

n=1

yn

n!

n−1∑

j=0

(
n− 1

j

)
kn−j

[
dj

dtj

(
1

ψ(t)

)n]
tk−n+j

∣∣∣∣
t=0

= δk,0 + k!

∞∑

m=k

ym

m!

(
m− 1

m− k

) [
dm−k

dtm−k

(
1

ψ(t)

)m]∣∣∣∣
t=0

. (164)

Proof: Part a) is the standard Lagrange theorem.

The first equation of part b) follows by exchanging the rôle of y and x, using ϕ(x) =
1

ψ(x)
and 0k = δk,0. (See

[8], pp. 524-525 for the case k = 1). The second equation uses the Leibniz rule. Then only j = n− k ≥ 0 survives
after evaluation at t = 0, and in the last formula the summation index has been changed for later purposes from
n to m.

Corollary 2:

dn

dyn

[
1

k!
(y[−1](y))k

]∣∣∣∣
y=0

=

(
n− 1

n− k

)
dn−k

dtn−k

[
1

ψn(t)

]∣∣∣∣
t=0

, for n ≥ k ∈ N. (165)

The δ term now disappeared for k ≥ 1.
This coincides with the inversion formula of Lagrange given in [3], Theorem 11.11, p. 435, used in the proof on p.
290.

Another formula is needed to convert later the negative powers of ψ in the Corollary into positive ones. This is
given in [3], as Remark 11.5, p. 432, also used in the proof on p. 290.

dm

dtm
[(h(t))s]

∣∣∣∣
t=0

=

m∑

r=0

(
s

r

)(
m− s

m− r

)
dm

dtm
[(h(t))r ]

∣∣∣∣
t=0

, for h(0) = 1 , m ∈ N0, s ∈ R . (166)

Now we start with the derivation of a generalized Schlöhmilch formula (we use here the column index k).

Ŝ1p(d, a;n, k) =
dn

dyn

[
(1 − d y)−

a

d

1

k!

(
−
1

d
log(1 − d y)

)k
]∣∣∣∣∣

y=0

for 0 ≤ k ≤ n . (167)

The result for k = 0 is known from eq. (62) to be risefac(d, a;x = 0, n). The Leibniz rule is applied (because there
is no closed formula for the inverse of the product in the solid brackets, written as k−th power). The derivatives
of the first factor are known (see the k = 0 result) as

dn−m

dyn−m

[
(1 − d y)−

a

d

]∣∣∣∣
y=0

= risefac(d, a;x = 0, n−m) . (168)

For the second factor the Corollary is applied with n → m, and the known compositional inverse of y[−1](d; y) =

−
1

d
log(1 − d y) viz y(d; t) = t ψ(d; t) =

1

d
(1 − e−d t), is used.

dm

dym

[
1

k!

(
−
1

d
log(1 − d y)

)k
]∣∣∣∣∣

y=0

=

(
m− 1

m− k

)
dm−k

dtm−k

[(
1 − e−d t

d t

)−m
]∣∣∣∣∣

t=0

. (169)
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The negative power on the r.h.s. is now converted with the help of eq. (166) with s → −m and m → m − k.

Then the binomial with negative upper entry is rewritten as

(
−m

r

)
= (−1)r

(
r +m− 1

r

)
(see eq. (95)), and we

use the abbreviation ψ(d; t) =
1 − e−d t

d t
from above.

dm

dym

[
1

k!

(
−
1

d
log(1 − d y)

)k
]∣∣∣∣∣

y=0

=

(
m− 1

m− k

) m−k∑

r=0

(−1)r
(
r +m− 1

r

)(
2m− k

m− k − r

)
dm−k

dtm−k
(ψ(d; t)r)

∣∣∣∣
t=0

.

(170)

With the e.g.f. EŜ2Col(d, a;x, r) = eax

(
1
d
(ed x − 1)

)r

r!
for column r of Ŝ2[d, a] from its Sheffer structure one

obtains after multiplication with x−r and a sign flip x = −t

ψ(d; t)r =

(
1 − e−d t

d t

)r

= ea t

∞∑

n=r

(−1)n−r Ŝ2(d, a;n, r) r!
tn−r

n!
=: ea tA(d, a; t, r). (171)

For the (m− k)-th derivative evaluated at t = 0 the Leibniz rule is again applied with a summation index p. The
exponential factor leads to am−k−p. The p-th derivative w.r.t. t of A(d, a; t, r) is evaluated at t = 0 after the index
shift n − r = s in A. This leads to the collapse of the s−sum due to the t = 0 evaluation, whence s = p, and
pp = p!. The result is

dp

dtp
A(d, a; t, r)

∣∣∣∣
t=0

=
r! p!

(p+ r)!
(−1)p Ŝ2(d, a; p+ r, r) . (172)

Thus

dm−k

dtm−k
(ψ(d; t)r)

∣∣∣∣
t=0

=

m−k∑

p=0

(
m− k

p

)
am−k−p (−1)p

1(
p+r
p

) Ŝ2(d, a, p+ r, r) , for m ≥ k . (173)

This leads, with the abbreviation risefac(d, a, x = 0, n−m) = (d, a)n−m, to

Ŝ1p(d, a;n, k) =
n∑

m=k

(
n

m

)
(d, a)n−m

(
m− 1

m− k

)m−k∑

r=0

(−1)r
(
r +m− 1

r

)(
2m− k

m+ r

)
∗

∗

m−k∑

p=0

(−1)p

(
m−k
p

)
(
p+r
r

) am−k−p Ŝ2(d, a; p+ r, r) , for n ≥ m ≥ 1, (174)

A new summation index m− k = m′ is used, and the sum over the triangular array, with rows indexed by m and
columns by r, is reordered by summing first the columns r = 0, ..., n − k and then the rows m = r, ..., n − k.
The binomials in these two sums are rewritten and the final result is (using column index m instead of k)

Ŝ1p(d, a;n,m) =
n!

(m− 1)!

n−m∑

r=0

(−1)r

r!

n−m∑

k=r

(d, a)n−k−m

(
2 k +m

k +m

)
1

k +m+ r

1

(n−m− k)!

1

(k − r)!
∗

∗

k∑

p=0

(−1)p

(
k

p

)
(
p+r

r

) ak−p Ŝ2(d, a; p+ r, r) for n ≥ m ≥ 1, (175)

and Ŝ1p(d, a;n, 0) = risefac(d, a;x = 0, n).

The binomials could be rewritten by building some binomials, but no essential simplification seems to be possible.

Both generalizations of the Schlöhmilch formula involve three sums, but the direct version given in eq. (69) looks
simpler than the second version eq. (175).

The statements in section D are obvious.
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