
Karlsruhe

January 9, 2018

Notes on the Discrete Theodorus Spiral
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Abstract

The explicit form for the coordinates of the points of the discrete Theodorus spiral including its
mirror points (the inner spiral) are given in Cartesian as well as polar coordinates. For computational
purpose the Cartesian coordinates are expressed in terms of reduced angles. A conjecture relating
points of the inner and outer discrete spiral is proved except for the fourth quadrant in the complex
plane. For this region a stronger conjecture is proposed.

1 Coordinates

The discrete spiral with the radial length rn =
√
n, n ∈ N, built from rectangular trian-

gles △(O, zn, zn+1) with length |zn, zn+1| =
√
1 = 1 named after the Pythagorean Theodorus

(ΘEO∆ΩPOΣ) [5] due to the interpretation by J. H. Anderhub [1] (see also [2], [3], [4], [6], [8]). In
the complex plane it is written in polar coordinates zn = rn e

i φn , n ∈ N. It can be continued inwards to
points ẑn by taking the mirror image of zn on the hypotenuseO, zn+1 [7], Fig. 1 (where zn and ẑn are called
Fn and Gn, respectively). See also the present Figure 3. One obtains ẑn after rotating zn around an axis

through the origin O, perpendicular to the complex plane, with angle αn = φn+1 − φn = arctan

(

1

rn

)

in the positive sense (φ1 = 0).

The recurrence for {zn}n>=1 is

zn+1 =

√
n+ 1√
n

ei αn zn, n = 1, 2 ..., with z1 = 1. (1)

This becomes

zn+1 =

(

1 +
1√
n
i

)

zn, n = 1, 2 ..., with z1 = 1. (2)

For the Cartesian coordinates zn = Rn + In i one obtains the mixed recurrence:

Rn+1 = Rn − 1√
n
In, In+1 =

1√
n
Rn + In, (3)

with inputs R1 = 1 and I1 = 0.

Iteration leads immediately to a recurrence for Rn alone (undefined sums are put to 0),

Rn+1 = Rn − 1√
n

n−1
∑

j=1

1√
n− j

Rn−j , n ∈ N, with R1 = 1. (4)

1 wolfdieter.lang@partner.kit.edu, http://www/kit.edu/~wl/
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Then In = −√
n (Rn+1 − Rn) becomes

In =

n−1
∑

j=1

1√
n− j

Rn−j , n ∈ N. (5)

The proof is straightforward, by showing that the recurrences from eq. (3) are satisfied together with the
inputs.
The explicit form can now be given.

Proposition 1: Cartesian Coordinates for zn

If the outer spiral points zn are taken in the complex plane C as zn = Rn + In i one has

Rn = 1 +
n−1
∑

j=2

(−1)⌊
j

2⌋
∑

2≤i2<i3< ...<ij ≤n−1

1
√

i2i3 · · · ij
, n ≥ 3, R1 = 1 = R2, (6)

In = 1 −
n−1
∑

j=2

(−1)⌈
j

2⌉
∑

2≤i2<i3<...<ij ≤n−1

1
√

i2i3 · · · ij
, n ≥ 3, I1 = 0, I2 = 1. (7)

Proof:

By induction on n one shows that the recurrences and the inputs are satisfied.The basis of the induction
for n = 1 is clear. Assuming that formulae eq. (6) and eq. (7) hold for k = 1, ..., n, one shows with
recurrence eq. (3) that the formulae hold also for n+ 1.

a) For the R-recurrence one collects from Rn the term j, for j = 2, ...., n− 1 and from the In sum the
term j − 1, with the first (j = 1) term 1. The remaining term j = n − 1 in the In sum is (with the

prefactor) − (−1)⌊n−1

2 ⌋ 1
√

2 · · · (n− 1)
. These In terms are to be multiplied with 1√

n
. For j = 2 one

obtains (− 1√
2
− ... − 1√

n− 1
)− 1√

n
. For j ≥ 3 the R part has overall sign (−1)⌊

j

2⌋ and all
1

√
...

terms

with products of j − 1 numbers from {2, ..., n − 1}. From the j − 1 term of the In with overall sign

(−1)⌈
j−1

2 ⌉ = −(−1)⌊
j

2⌋ (shown by taking j even or odd), one obtains all
1

√
...

terms with j − 2 numbers

from {2, ..., n− 1} multiplied by 1√
n
, i.e., all

1
√
...

terms with j − 1 numbers where one of the numbers

is always n. Together this becomes, with the extra term j = n− 1 in the In part given above,

1 +

n
∑

j=2

(−1)⌊
j

2⌋
∑

2≤i2<i3< ...<ij ≤n

1
√

i2i3 · · · ij
,

This is the claimed formula for Rn+1 of eq. (6).

b) The proof for the I-recurrence eq. (3) is done along the same line. Here the identity (−1)⌊
j−1

2 ⌋ =

−(−1)⌈
j

2⌉ is employed in the R part with index j − 1 which is taken together with the j

term of the I part. The left over term in the R part produces in the second part of eq. (3)

(−1)⌊n−1

2 ⌋ 1
√

2 · · · (n − 1)n
= −(−1)⌈n

2 ⌉ 1
√

2 · · · (n− 1)n
from j = n−1. This leads to the claimed In+1

of eq. (7).

Example 1:

R4 = − 1 − 1√
2

− 1√
3

− 1√
2 · 3

≃ −.6927053409 (Maple 10 digits),

I4 = 1 +
1√
2

+
1√
3

− 1√
2 · 3

≃ 1.876208759 (Maple 10 digits).
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The number of terms of Rn and In in eq. (6) and eq. (7) grows exponentially: both numbers are 2n−2, for
n >= 2 and 1 for n = 1. Therefore the recurrence or the explicit formulae are not useful to compute Rn

and In for large n (say, n ≥ 25). Later a more efficient way to compute these quantities will be given
based on the angles φn which satisfy a simple recurrence.

Corollary 1: Cartesian Coordinates for ẑn

If the inner spiral points ẑn are taken in the complex plane C as ẑn = R̂n + În i one has in terms of
points of the coordinates of the outer spiral

R̂n =
(n− 1)Rn − 2

√
n In

n+ 1
, n ∈ N, (8)

În =
(n− 1) In + 2

√
nRn

n+ 1
, n ∈ N. (9)

This follows directly from the mirror definition for ẑn, namely (see also [7], and the present Figure 3) by
a rotation of 0 zn with angle 2αn. This implies |ẑn| = |zn|.

ẑn = e
i 2 arctan

(

1
√

n

)

zn. (10)

The square of the formula exp

(

i arctan

(

1√
n

))

=

√
n + i√
n+ 1

leads to

ẑn =
n− 1 + 2

√
n i

n+ 1
zn . (11)

This produces Corollary 1.

Example 2:

R̂4 =
1

5

(

− 1 − 7

2

√
2 − 7

3

√
3 +

1

6

√
6

)

≃ −1.916590212 (Maple 10 digits),

Î4 =
1

5

(

7 − 1

2

√
2 − 1

3

√
3 − 7

6

√
6

)

≃ 0.5715609834 (Maple 10 digits).

One can also give a mixed recurrence for R̂n and În by looking at a drawing of the points zn−1, zn, zn+1

and ẑn−1, ẑn. The important angle is ∠(ẑn−1, O, zn+1) = αn−1 − αn. Remember that α = φn+1 − φn,
and note that αn−1 > αn. Then the angle ∠(ẑn, O, ẑn−1) = αn − (αn−1 − αn) = 2αn − αn−1. Thus,
by a rotation and a scaling, to obtain the correct length |ẑn| = |zn| = rn =

√
n ,

ẑn =

√
n√

n− 1
ei (2αn −αn−1) ẑn−1 , n = 2, 3, ..., with ẑ1 = i . (12)

A calculation of βn−1 := 2αn − αn−1 = 2 arctan

(

1√
n

)

− arctan

(

1√
n− 1

)

, for n ≥ 2, leads, with

2 arctan

(

1√
n

)

= arctan

(

2n√
n (n − 1)

)

, and the difference formula for arctan to

βn−1 = arctan

(

2n
√
n− 1 −

√

n (n− 1)

2n + (n− 1)
√

n (n− 1)

)

. (13)

This implies, after some simplifications,

cos βn−1 =
1

√

1 + (tan βn−1)2
=

2n + (n− 1)
√

n (n− 1)

n (n+ 1)
, (14)

sin βn−1 =
tan βn−1

√

1 + (tan βn−1)2
=

2n
√
n− 1 − √

n (n− 1)

n (n+ 1)
. (15)

This gives the following mixed recurrence for R̂n and În.
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Proposition 2: Mixed recurrence for R̂n and În

R̂n =
1

(n+ 1)
√

n (n− 1)

(

(2n+ (n− 1)
√

n (n− 1) ) R̂n−1 − (2n
√
n− 1− (n− 1)

√
n ) În−1

)

, (16)

În =
1

(n+ 1)
√

n (n− 1)

(

(2n + (n− 1)
√

n (n− 1) ) În−1 + (2n
√
n− 1− (n− 1)

√
n ) R̂n−1

)

, (17)

for n = 2, 3, ..., with inputs R̂1 = 0 and Î1 = 1. The iteration, in order to obtain an unmixed recurrence
and from this the explicit form, is not considered here, because the explicit form is obtained from eq. (8)
and eq. (9) and the explicit forms of Rn and In given in eq. (6) and eq. (7).

Proposition 3: Explicit formulae for R̂n and În

R̂n =
1

n+ 1






(n− 1 − 2

√
n ) + (n − 1 + 2

√
n )

⌊n−1

2 ⌋
∑

J=1

(−1)J
∑

2≤i2<i3< ...<i2J ≤n−1

1√
i2i3 · · · i2J

+(n − 1 − 2
√
n )

⌊n−2

2 ⌋
∑

J=1

(−1)J
∑

2≤i2<i3<...<i2J+1 ≤n−1

1√
i2i3 · · · i2J+1






, (18)

În =
1

n+ 1






(n− 1 + 2

√
n ) + (−(n − 1) + 2

√
n )

⌊n−1

2 ⌋
∑

J=1

(−1)J
∑

2≤i2<i3< ...<i2J ≤n−1

1√
i2i3 · · · i2J

+(n + 1 − 2
√
n )

⌊n−2

2 ⌋
∑

J=1

(−1)J
∑

2≤i2<i3<...<i2J+1 ≤n−1

1√
i2i3 · · · i2J+1






. (19)

Proof:

From eq. (8) with eqs. (6) and (7) inserted, with replacement (−1)⌈
j

2⌉ = −(−1)⌊
j−1

2 ⌋, one splits the two

sums into even and odd j: j = 2J , with j = 1, ...,

⌊

n− 1

2

⌋

and j = 2J + 1, with j = 1, ...,

⌊

n− 2

2

⌋

.

The following splitting is used.

(n− 1) (−1)⌊
j

2⌋ − 2
√
n (−1)⌊

j−1

2 ⌋ =







(−1)J (n − 1 + 2
√
n ), if j = 2J

(−1)J (n − 1 − 2
√
n ), if j = 2J + 1

. (20)

This produces the R part of the proposition. The I part is then obtained with the splitting

(n− 1) (−1)⌊
j−1

2 ⌋ + 2
√
n (−1)⌊

j

2⌋ =







(−1)J (−(n − 1) + 2
√
n ), if j = 2J

(−1)J (n − 1 + 2
√
n ), if j = 2J + 1

. (21)

Example 3: For n = 4 this checks with Example 2.

The remark made above on the ineffectiveness of these formulae for large n computations in connection
with Rn and In applies here as well. Here the following section on angles will come to rescue.
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2 Angles

a) For the outer spiral the polar angle φn of zn is

φn =

n−1
∑

k=1

αk =

n−1
∑

k=1

arctan

(

1√
k

)

, for n = 2, 3, ... , (22)

and φ1 = 0.

The recurrence is

φn+1 = φn + αn = φn + arctan

(

1√
n

)

, for n = 1, 2, ..., with φ1 = 0. (23)

b) For the inner spiral the polar angle φ̂n of ẑn is (see Figure 3)

φ̂n =

n−1
∑

k=0

βk =

n−1
∑

k=0

(2αk+1 − αk) =

n−1
∑

k=1

αk + 2αn = φn + 2αn = φn+1 + αn , (24)

where α0 = 0 and n ∈ N.

The explicit form for these angles are obtained from those for Rn and In from equations (6) and (7).
For this one needs the number of the sheet in the complex plane where zk, respectively ẑk, lives. The

point zk lives on sheet SK(k)+1, with K(k) =

⌊

φk

2π

⌋

. The number of points z up to, and including, sheet

Sn := ρ ei ϕ, for n ∈ N, with ρ > 0 and ϕ ∈ [2 (n − 1)π, 2nπ) is given by A072895(n) with A072895 =
[17, 54, 110, 186, 281, 396, 532, 686, 861, 1055, ...]. These numbers are the arguments k where the num-
ber n appears for the first time in the sequence {K(k)}k≥ 1 after subtracting 1, for n ∈ N.
For the numbers of points z on sheet Sn see A295338(n) with A295338= [17, 37, 56, 76, 95, 115, 136, 154,
175, 194, 214, 234, 254 ...] (first differences of A072895).

Depending on the quadrants I, II, III, and IV of sheet SK(n)+1 (we omit the sheet index on the quad-
rants) the formula for the angle φn of zn becomes in terms of real and imaginary parts Rn and In on this
sheet

φn = K(n) 2π + σ(n)π + arctan

(

In

Rn

)

, (25)

with

σ(n) =







0 if zn ∈ I,
1 if zn ∈ II or III,
2 if zn ∈ IV .

(26)

For example z19 lives in quadrant I of sheet S2 (becauseK(19) = 1) therefore φ19 = 2π+arctan

(

I19

R19

)

,

with R19 ≃ 4.144473699 and I19 ≃ 1.350310247 (Maple 10 digits), leading to φ19 ≃ 6.598149490. Here
we used Rn and In from eqs. (6) and (7).

But we can now use eq. (25) to compute Rn and In in terms of the reduced angle φn which we denote by
ϕn:

ϕn := φn −K(n) 2π , (27)

Rn =
√
n cos (ϕn) , and In =

√
n sin (ϕn) . (28)

Note that these formulae are valid for all four quadrants. They allow fast computation of the real and
imaginary part of zn because of the simple recurrence for φn from eq. (23). This shows that there are only
n−1 arctan terms (like in eq. (22)). For example R100 ≃ 5.481207079 which needed 0.095 s for Maple13.
Similarly for I100 ≃ −8.363992405, where z100, with K(100) = 2, lives on sheet S3 in quadrant IV ,
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with ϕ100 ≃ 5.292504709 corresponding to about 303.2◦. This fits with φ100 = 6π + arctan
(

I100
R100

)

≃
17.85887529.

Similarly, the point ẑk lives on sheet S
K̂(k)+1, with K̂(k) =

⌊

φ̂k

2π

⌋

. The number of points ẑ up to, and in-

cluding, sheet Sn is given by A295339(n) with A295339 = [15, 52, 108, 184, 279, 394, 530, 684, 859, 1053,
...], and the number of points ẑ on sheet Sn are given in A296179(n) with A296179 = [15, 37, 56, 76, 95,
115, 136, 154, 175, 194, 214, 234, 254 ...]. The apparent equality up to the first entry of this sequence with
A295338 for points z will be discussed in Section C.

The φ̂n angle of ẑn is then, depending on the quadrant on sheet S
K̂(n) +1,

φ̂n = K̂(n) 2π + σ̂(n)π + arctan

(

În

R̂n

)

, (29)

with σ̂(n) like σ(n) in eq. (26) with z → ẑ.

Again the real and imaginary parts of ẑn can be computed also for large n from the reduced angle ϕ̂n

ϕ̂n := φ̂n − K̂(n) 2π , (30)

with φ̂n given in terms of φn+1 in eq. (24). They are

R̂n =
√
n cos (ϕ̂n) , and În =

√
n sin (ϕ̂n) . (31)

For example, R̂100 ≃ 7.028904480 is found in 0.108 s, and also Î100 ≃ −7.112981218. ẑ100 lives on sheet
S3 (K̂(100) = 2) in quadrant IV with ϕ̂ ≃ 5.491842014 corresponding to about 314.7◦. This fits with

φ̂100 = 6π − arctan

(

| Î100 |
R̂100

)

≃ 18.05821260.

3 A conjecture on sequences K̂ and K

The apparent coincidence of A95338 and A296179 up to the first entry follows from the conjecture that
A295339(k) =A072895(k) − 2 for k ∈ N. This, in turn, is equivalent to the following conjecture.

Conjecture:

C(k) : K̂(k − 2) = K(k) , for k ≥ 3 . (32)

This means that if the first appearance of any number m in the sequences K̂ is at position, say p(m), then
it is in sequence K at position p(m) + 2. Then the first differences of A072895 and A295339 coincide up
to the first entry.

In order to analyze this conjecture we first use a simple consequence of the definition of φ̂ of eq. (24).

Lemma 1:

φ̂k−2 − φk = αk−2 − αk−1 =: ∆k = arctan

( √
k − 1 −

√
k − 2

1 +
√

(k − 1) (k − 2)

)

> 0 , for k ≥ 3 . (33)

Proof:

By eq. (24) φ̂k−2 = φk−1 + αk−2 = (φk − αk−1) + αk−2, by eq. (23). ∆k is obviously positive because

αk = arctan

(

1√
k

)

, and arctan is strictly increasing, staying below
π

2
. The explicit form results from the

formula for arctan(x) − arctan(y) if x y > −1, which is satisfied.
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Consider, for k ≥ 3, the interval

[⌊

φk

2π

⌋

,

⌊

φk

2π

⌋

+ 1

]

with the interior point
φk

2π
. The conjecture

means that
φ̂k−2

2π
is a point in the open interval

(

φk

2π
, K(k) + 1

)

due to Lemma 1. That is ∆k <

2π

(

(K(k) + 1) − φk

2π

)

= 2π

(

1 − frac

(

φk

2π

))

. Alternatively this means that the conjecture is

φ̂k−2 = φk + ∆k < 2π (K(k) + 1) , for k ≥ 3. (34)

This is considered for the quadrants of the sheet SK(k)+1 on which zk lives. It turns out that the conjecture
can be proved for quadrants I, II and III. For quadrant IV a stronger conjecture will be given.

Proposition 4: Proof of the conjecture for quadrants I, II and III

The conjecture, that is eq. (34), is true for points z on quadrants I, II or III of the complex plane.

Proof:

i) Quadrant I: From eq. (25), with eq. (26), φ(k) + ∆k =

(

K(k) 2π + arctan

(

Ik

Rk

))

+ ∆k. Therefore

the conjecture eq. (34) becomes

∆k + arctan

(

Ik

Rk

)

< 2π . (35)

With the explicit form of ∆k from eq. (33) the addition formula arctan(x) + arctan(y) is applied which

depends for x =
√
k−1−

√
k−2

1+
√

(k−1) (k−2)
> 0 on whether x y < 1 or x y > 1. If the first case should apply

one will obtain arctan with the positive argument
x + y

1 − x y
with y = Ik

Rk
> 0 (for k ≥ 3), which is

<
π

2
< 2π, and the conjecture is true. In the second case the result is π − arctan

(

x + y

x y − 1

)

, again

with a positive argument, name it X, and eq. (34) becomes arctan(X) > −π which is trivially satisfied
because arctan(X) > 0.

ii) Quadrant II: From eq. (25), with eq. (26), φ(k) + ∆k =

(

2πK(k) + π − arctan

(

Ik

|Rk |

))

+ ∆k.

Therefore the conjecture eq. (34) becomes arctan

(

Ik

|Rk |

)

− ∆k > −π. The arctan difference formula

applies because the product x y > 0 > −1. Whatever sign the new arctan argument may have the new
arctan will be > −π

2 , hence > −π, and the conjecture is true.

iii) Quadrant III: Here the conjecture becomes ∆k + arctan

( | Ik |
|Rk |

)

< π. If x y < 1, with x =
√
k − 1 −

√
k − 2

1 +
√

(k − 1) (k − 2)
> 0 and y =

| Ik |
|Rk |

> 0, then one obtains, after applying the formula for

arctan(x) + arctan(y), the new arctan argument, name it X, which is > 0, and the conjecture is true

because arctan(X) <
π

2
< π.

In the case x y > 1 one obtains +π − arctan(Y ) with a Y > 0, and this satisfies the conjecture because
arctan(Y ) > 0.

The situation for quadrant IV is different. The conjecture eq. (34) is now, with x > 0 as above in case

iii) and y =
| Ik |
Rk

> 0, − arctan(y) + arctan(x) = arctan
(

x− y
1+ x y

)

< 0 (the arctan difference formula

needed x y > 0 > −1). Because the denominator of the argument is positive the conjecture reduces to
y − x > 0, that is,

CIV(k) :
| Ik |
Rk

−
√
k − 1 −

√
k − 2

1 +
√

(k − 1) (k − 2)
> 0 , for k ≥ 3 . (36)
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Lemma 2: Strictly decreasing xk

xk :=

√
k − 1 −

√
k − 2

1 +
√

(k − 1) (k − 2)
is strictly decreasing for k ≥ 2.

Proof:

i) 1 +
√

k (k − 1) > 1 +
√

(k − 1) (k − 2) because, from the strict monotonicity of
√
x for x ≥ 0, this

leads to k (k − 1) > (k − 1) (k − 2), i.e., k > 1, satisfied for k ≥ 2.

ii)
√
k −

√
k − 1 <

√
k − 1 −

√
k − 2, i.e., k (k−2) < (k−1)2, i.e., . 0 < 1. Therefore, xk+1 < xk for

k ≥ 2.
From this follows that the second term on the l.h.s. of eq. (36), x(k), takes its largest value in quadrant
IV on sheet Sn for the first point z

k̃
= z

k̃(n) in this quadrant. The corresponding sequence {k̃(n)}n≥ 1

is obtained from the sequence {KIV (k)}k≥ 1 with

KIV (k) :=

⌊

φk − 3π
2

2π

⌋

+ 1 , (37)

by recording the positions where it becomes n for the first time. This is the sequence A296181(n), for
n ≥ 1, with A296181 = [12, 44, 95, 166, 256, 367, 497, ...].

The first term on the l.h.s. of eq. (36), i.e., tan(γk) :=
| Ik |
Rk

, with γk = 2π − ϕk, an angle in quadrant

IV of sheet SK(k)+1 counted in the negative sense from the positive real axis of the next sheet, is
smallest if γk is smallest, i.e., if zk is nearest to this real axis. This happens on sheet Sn for zk(n) with
k(n) =A07295(n), for n ≥ 1. We now propose a stronger conjecture then CIV (n), i.e.,

CIVnew(n) : tan
(

2π − ϕk(n)

)

> x
k̃(n) , i.e., γk(n) = 2π − ϕk(n)

!
> arctan

(

x
k̃(n)

)

, n ≥ 1 ,

(38)
with k(n) =A072895(n) and k̃(n) =A296181(n), with ϕk from eq. (27) and xk from Lemma 2.

Proposition 5: CIVnew(n) ⇒ CIV(k)

If CIVnew(n) holds for all n ∈ N then CIV(k) holds for all k ∈ N .

Proof:

i) For all zk in quadrant IV of sheet Sn: γk ≥ γk(n). This is obvious from the definition of k(n) as largest
k value for zk on sheet Sn (automatically in quadrant IV , nearest to the positive real axis of sheet Sn+1),
because γk = 2π − ϕk decreases with increasing k.

ii) For all zk on quadrant IV of sheet Sn: xk̃ ≥ xk. This is clear from Lemma 2 and the remark following
it.

Thus, for all zk in quadrant IV of sheet Sn, for n ∈ N : γk ≥ γk(n)
!
> arctan(x

k̃(n)) ≥ arctan(xk)),

because arctan is (strictly) increasing.

Note: The largest value for xk of Lemma 2 with zk in quadrant IV appears of course on sheet S1, and
for k = 12. It is tempting to propose instead of conjecture CIVnew(n) for zk in quadrant IV on sheet Sn

the conjecture tan(γk(n))
?
>x12 ≃ 0.01343540575 (Maple 10 digits), with k(n) =A072895(n). However,

this conjecture is already false for sheet S2, because tan(γ54) ≃ 0.004555785878 (Maple 10 digits). But
x
k̃(2) = x44 ≃ 0.001763287640 and conjecture CIVnew(2) is true.
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Figure 1: Outer discrete Theodorus spiral, Figure 2: Inner discrete Theodorus spiral,

n = 1..17 n = 1..15, (Zn = ẑn)

Figure 3: Inner spiral point construction

(Z2 = ẑ2, α = α2, phi n = φ(n), Phi 2 = φ̂(2))
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