Notes on the Discrete Theodorus Spiral

Wolfdieter L a $\mathrm{ng}{ }^{1}$

Abstract

The explicit form for the coordinates of the points of the discrete Theodorus spiral including its mirror points (the inner spiral) are given in Cartesian as well as polar coordinates. For computational purpose the Cartesian coordinates are expressed in terms of reduced angles. A conjecture relating points of the inner and outer discrete spiral is proved except for the fourth quadrant in the complex plane. For this region a stronger conjecture is proposed.

1 Coordinates

The discrete spiral with the radial length $r_{n}=\sqrt{n}, n \in \mathbb{N}$, built from rectangular triangles $\triangle\left(O, z_{n}, z_{n+1}\right)$ with length $\left|\overline{z_{n}, z_{n+1}}\right|=\sqrt{1}=1$ named after the Pythagorean Theodorus $(\Theta \mathrm{EO} \Delta \Omega \mathrm{PO} \Sigma)[5]$ due to the interpretation by J. H. Anderhub [1] (see also [2], [3], [4], [6], [8]). In the complex plane it is written in polar coordinates $z_{n}=r_{n} e^{i \phi_{n}}, n \in \mathbb{N}$. It can be continued inwards to points \hat{z}_{n} by taking the mirror image of z_{n} on the hypotenuse $\overline{O, z_{n+1}}[7]$, Fig. 1 (where z_{n} and \hat{z}_{n} are called F_{n} and G_{n}, respectively). See also the present Figure 3 . One obtains \hat{z}_{n} after rotating z_{n} around an axis through the origin O, perpendicular to the complex plane, with angle $\alpha_{n}=\phi_{n+1}-\phi_{n}=\arctan \left(\frac{1}{r_{n}}\right)$ in the positive sense $\left(\phi_{1}=0\right)$.
The recurrence for $\left\{z_{n}\right\}_{n>=1}$ is

$$
\begin{equation*}
z_{n+1}=\frac{\sqrt{n+1}}{\sqrt{n}} e^{i \alpha_{n}} z_{n}, \quad n=1,2 \ldots, \text { with } z_{1}=1 \tag{1}
\end{equation*}
$$

This becomes

$$
\begin{equation*}
z_{n+1}=\left(1+\frac{1}{\sqrt{n}} i\right) z_{n}, \quad n=1,2 \ldots, \text { with } z_{1}=1 \tag{2}
\end{equation*}
$$

For the Cartesian coordinates $z_{n}=R_{n}+I_{n} i$ one obtains the mixed recurrence:

$$
\begin{equation*}
R_{n+1}=R_{n}-\frac{1}{\sqrt{n}} I_{n}, \quad I_{n+1}=\frac{1}{\sqrt{n}} R_{n}+I_{n} \tag{3}
\end{equation*}
$$

with inputs $R_{1}=1$ and $I_{1}=0$.
Iteration leads immediately to a recurrence for R_{n} alone (undefined sums are put to 0),

$$
\begin{equation*}
R_{n+1}=R_{n}-\frac{1}{\sqrt{n}} \sum_{j=1}^{n-1} \frac{1}{\sqrt{n-j}} R_{n-j}, \quad n \in \mathbb{N}, \quad \text { with } \quad R_{1}=1 \tag{4}
\end{equation*}
$$

[^0]Then $I_{n}=-\sqrt{n}\left(R_{n+1}-R_{n}\right)$ becomes

$$
\begin{equation*}
I_{n}=\sum_{j=1}^{n-1} \frac{1}{\sqrt{n-j}} R_{n-j}, \quad n \in \mathbb{N} \tag{5}
\end{equation*}
$$

The proof is straightforward, by showing that the recurrences from eq. (3) are satisfied together with the inputs.
The explicit form can now be given.

Proposition 1: Cartesian Coordinates for z_{n}

If the outer spiral points z_{n} are taken in the complex plane \mathbb{C} as $z_{n}=R_{n}+I_{n} i$ one has

$$
\begin{align*}
& R_{n}=1+\sum_{j=2}^{n-1}(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \sum_{2 \leq i_{2}<i_{3}<\ldots<i_{j} \leq n-1} \frac{1}{\sqrt{i_{2} i_{3} \cdots i_{j}}}, n \geq 3, R_{1}=1=R_{2}, \tag{6}\\
& I_{n}=1-\sum_{j=2}^{n-1}(-1)^{\left\lceil\frac{j}{2}\right\rceil} \sum_{2 \leq i_{2}<i_{3}<\ldots<i_{j} \leq n-1} \frac{1}{\sqrt{i_{2} i_{3} \cdots i_{j}}}, n \geq 3, I_{1}=0, I_{2}=1 . \tag{7}
\end{align*}
$$

Proof:

By induction on n one shows that the recurrences and the inputs are satisfied.The basis of the induction for $n=1$ is clear. Assuming that formulae eq. (6) and eq. (7) hold for $k=1, \ldots, n$, one shows with recurrence eq. (3) that the formulae hold also for $n+1$.
a) For the R-recurrence one collects from R_{n} the term j, for $j=2, \ldots, n-1$ and from the I_{n} sum the term $j-1$, with the first $(j=1)$ term 1 . The remaining term $j=n-1$ in the I_{n} sum is (with the prefactor) $-(-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor} \frac{1}{\sqrt{2 \cdots(n-1)}}$. These I_{n} terms are to be multiplied with $\frac{1}{\sqrt{n}}$. For $j=2$ one obtains $\left(-\frac{1}{\sqrt{2}}-\ldots-\frac{1}{\sqrt{n-1}}\right)-\frac{1}{\sqrt{n}}$. For $j \geq 3$ the R part has overall $\operatorname{sign}(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}$ and all $\frac{1}{\sqrt{\cdots}}$ terms with products of $j-1$ numbers from $\{2, \ldots, n-1\}$. From the $j-1$ term of the I_{n} with overall sign $(-1)^{\left\lceil\frac{j-1}{2}\right\rceil}=-(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}$ (shown by taking j even or odd), one obtains all $\frac{1}{\sqrt{\cdots}}$ terms with $j-2$ numbers from $\{2, \ldots, n-1\}$ multiplied by $\frac{1}{\sqrt{n}}$, i.e., all $\frac{1}{\sqrt{\cdots}}$ terms with $j-1$ numbers where one of the numbers is always n. Together this becomes, with the extra term $j=n-1$ in the I_{n} part given above,

$$
1+\sum_{j=2}^{n}(-1)^{\left\lfloor\frac{j}{2}\right\rfloor} \sum_{2 \leq i_{2}<i_{3}<\ldots<i_{j} \leq n} \frac{1}{\sqrt{i_{2} i_{3} \cdots i_{j}}},
$$

This is the claimed formula for R_{n+1} of eq. (6).
b) The proof for the I-recurrence eq. (3) is done along the same line. Here the identity $(-1)^{\left\lfloor\frac{j-1}{2}\right\rfloor}=$ $-(-1)^{\left\lceil\frac{j}{2}\right\rceil}$ is employed in the R part with index $j-1$ which is taken together with the j term of the I part. The left over term in the R part produces in the second part of eq. (3) $(-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor} \frac{1}{\sqrt{2 \cdots(n-1) n}}=-(-1)^{\left\lceil\frac{n}{2}\right\rceil} \frac{1}{\sqrt{2 \cdots(n-1) n}}$ from $j=n-1$. This leads to the claimed I_{n+1} of eq. (7).

Example 1:

$R_{4}=-1-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2 \cdot 3}} \simeq-.6927053409$ (Maple 10 digits),
$I_{4}=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2 \cdot 3}} \simeq 1.876208759$ (Maple 10 digits).

The number of terms of R_{n} and I_{n} in eq. (6) and eq. (7) grows exponentially: both numbers are 2^{n-2}, for $n>=2$ and 1 for $n=1$. Therefore the recurrence or the explicit formulae are not useful to compute R_{n} and I_{n} for large n (say, $n \geq 25$). Later a more efficient way to compute these quantities will be given based on the angles ϕ_{n} which satisfy a simple recurrence.

Corollary 1: Cartesian Coordinates for $\hat{\mathbf{z}}_{\mathrm{n}}$

If the inner spiral points \hat{z}_{n} are taken in the complex plane \mathbb{C} as $\hat{z}_{n}=\hat{R}_{n}+\hat{I}_{n} i$ one has in terms of points of the coordinates of the outer spiral

$$
\begin{align*}
& \hat{R}_{n}=\frac{(n-1) R_{n}-2 \sqrt{n} I_{n}}{n+1}, n \in \mathbb{N} \tag{8}\\
& \hat{I}_{n}=\frac{(n-1) I_{n}+2 \sqrt{n} R_{n}}{n+1}, n \in \mathbb{N} \tag{9}
\end{align*}
$$

This follows directly from the mirror definition for \hat{z}_{n}, namely (see also [7], and the present Figure 3) by a rotation of $\overline{0 z_{n}}$ with angle $2 \alpha_{n}$. This implies $\left|\hat{z}_{n}\right|=\left|z_{n}\right|$.

$$
\begin{equation*}
\hat{z}_{n}=e^{i 2 \arctan \left(\frac{1}{\sqrt{n}}\right)} z_{n} . \tag{10}
\end{equation*}
$$

The square of the formula $\exp \left(i \arctan \left(\frac{1}{\sqrt{n}}\right)\right)=\frac{\sqrt{n}+i}{\sqrt{n+1}}$ leads to

$$
\begin{equation*}
\hat{z}_{n}=\frac{n-1+2 \sqrt{n} i}{n+1} z_{n} \tag{11}
\end{equation*}
$$

This produces Corollary 1.

Example 2:

$\hat{R}_{4}=\frac{1}{5}\left(-1-\frac{7}{2} \sqrt{2}-\frac{7}{3} \sqrt{3}+\frac{1}{6} \sqrt{6}\right) \simeq-1.916590212$ (Maple 10 digits), $\hat{I}_{4}=\frac{1}{5}\left(7-\frac{1}{2} \sqrt{2}-\frac{1}{3} \sqrt{3}-\frac{7}{6} \sqrt{6}\right) \simeq 0.5715609834$ (Maple 10 digits).
One can also give a mixed recurrence for \hat{R}_{n} and \hat{I}_{n} by looking at a drawing of the points z_{n-1}, z_{n}, z_{n+1} and $\hat{z}_{n-1}, \hat{z}_{n}$. The important angle is $\angle\left(\hat{z}_{n-1}, O, z_{n+1}\right)=\alpha_{n-1}-\alpha_{n}$. Remember that $\alpha=\phi_{n+1}-\phi_{n}$, and note that $\alpha_{n-1}>\alpha_{n}$. Then the angle $\angle\left(\hat{z}_{n}, O, \hat{z}_{n-1}\right)=\alpha_{n}-\left(\alpha_{n-1}-\alpha_{n}\right)=2 \alpha_{n}-\alpha_{n-1}$. Thus, by a rotation and a scaling, to obtain the correct length $\left|\hat{z}_{n}\right|=\left|z_{n}\right|=r_{n}=\sqrt{n}$,

$$
\begin{equation*}
\hat{z}_{n}=\frac{\sqrt{n}}{\sqrt{n-1}} e^{i\left(2 \alpha_{n}-\alpha_{n-1}\right)} \hat{z}_{n-1}, n=2,3, \ldots, \quad \text { with } \quad \hat{z}_{1}=i \tag{12}
\end{equation*}
$$

A calculation of $\beta_{n-1}:=2 \alpha_{n}-\alpha_{n-1}=2 \arctan \left(\frac{1}{\sqrt{n}}\right)-\arctan \left(\frac{1}{\sqrt{n-1}}\right)$, for $n \geq 2$, leads, with $2 \arctan \left(\frac{1}{\sqrt{n}}\right)=\arctan \left(\frac{2 n}{\sqrt{n}(n-1)}\right)$, and the difference formula for \arctan to

$$
\begin{equation*}
\beta_{n-1}=\arctan \left(\frac{2 n \sqrt{n-1}-\sqrt{n(n-1)}}{2 n+(n-1) \sqrt{n(n-1)}}\right) . \tag{13}
\end{equation*}
$$

This implies, after some simplifications,

$$
\begin{align*}
& \cos \beta_{n-1}=\frac{1}{\sqrt{1+\left(\tan \beta_{n-1}\right)^{2}}}=\frac{2 n+(n-1) \sqrt{n(n-1)}}{n(n+1)}, \tag{14}\\
& \sin \beta_{n-1}=\frac{\tan \beta_{n-1}}{\sqrt{1+\left(\tan \beta_{n-1}\right)^{2}}}=\frac{2 n \sqrt{n-1}-\sqrt{n}(n-1)}{n(n+1)} . \tag{15}
\end{align*}
$$

This gives the following mixed recurrence for \hat{R}_{n} and \hat{I}_{n}.

Proposition 2: Mixed recurrence for $\hat{\mathbf{R}}_{\mathrm{n}}$ and $\hat{\mathbf{I}}_{\mathrm{n}}$

$$
\begin{align*}
& \hat{R}_{n}=\frac{1}{(n+1) \sqrt{n(n-1)}}\left((2 n+(n-1) \sqrt{n(n-1)}) \hat{R}_{n-1}-(2 n \sqrt{n-1}-(n-1) \sqrt{n}) \hat{I}_{n-1}\right), \tag{16}\\
& \hat{I}_{n}=\frac{1}{(n+1) \sqrt{n(n-1)}}\left((2 n+(n-1) \sqrt{n(n-1)}) \hat{I}_{n-1}+(2 n \sqrt{n-1}-(n-1) \sqrt{n}) \hat{R}_{n-1}\right), \tag{17}
\end{align*}
$$

for $n=2,3, \ldots$, with inputs $\hat{R}_{1}=0$ and $\hat{I}_{1}=1$. The iteration, in order to obtain an unmixed recurrence and from this the explicit form, is not considered here, because the explicit form is obtained from eq. (8) and eq. (9) and the explicit forms of R_{n} and I_{n} given in eq. (6) and eq. (7).
Proposition 3: Explicit formulae for $\hat{\mathbf{R}}_{\mathrm{n}}$ and $\hat{\mathbf{I}}_{\mathrm{n}}$

$$
\begin{align*}
& \hat{R}_{n}=\frac{1}{n+1}\left((n-1-2 \sqrt{n})+(n-1+2 \sqrt{n}) \sum_{J=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{J} \sum_{2 \leq i_{2}<i_{3}<\ldots<i_{2 J} \leq n-1} \frac{1}{\sqrt{i_{2} i_{3} \cdots i_{2 J}}}\right. \\
& \left.+(n-1-2 \sqrt{n}) \sum_{J=1}^{\left\lfloor\frac{n-2}{2}\right\rfloor}(-1)^{J} \sum_{2 \leq i_{2}<i_{3}<\ldots<i_{2 J+1} \leq n-1} \frac{1}{\sqrt{i_{2} i_{3} \cdots i_{2 J+1}}}\right), \tag{18}\\
& \hat{I}_{n}=\frac{1}{n+1}\left((n-1+2 \sqrt{n})+(-(n-1)+2 \sqrt{n}) \sum_{J=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{J} \sum_{2 \leq i_{2}<i_{3}<\ldots<i_{2 J} \leq n-1} \frac{1}{\sqrt{i_{2} i_{3} \cdots i_{2 J}}}\right. \\
& \left.+(n+1-2 \sqrt{n}) \sum_{J=1}^{\left\lfloor\frac{n-2}{2}\right\rfloor}(-1)^{J} \sum_{2 \leq i_{2}<i_{3}<\ldots<i_{2 J+1} \leq n-1} \frac{1}{\sqrt{i_{2} i_{3} \cdots i_{2 J+1}}}\right) . \tag{19}
\end{align*}
$$

Proof:

From eq. (8) with eqs. (6) and (7) inserted, with replacement $(-1)^{\left\lceil\frac{j}{2}\right\rceil}=-(-1)^{\left\lfloor^{\frac{j-1}{2}}\right\rfloor}$, one splits the two sums into even and odd $j: j=2 J$, with $j=1, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor$ and $j=2 J+1$, with $j=1, \ldots,\left\lfloor\frac{n-2}{2}\right\rfloor$. The following splitting is used.

$$
(n-1)(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}-2 \sqrt{n}(-1)^{\left\lfloor\frac{j-1}{2}\right\rfloor}=\left\{\begin{array}{ll}
(-1)^{J}(n-1+2 \sqrt{n}), & \text { if } j=2 J \tag{20}\\
(-1)^{J}(n-1-2 \sqrt{n}), & \text { if } j=2 J+1
\end{array} .\right.
$$

This produces the R part of the proposition. The I part is then obtained with the splitting

$$
(n-1)(-1)^{\left\lfloor\frac{j-1}{2}\right\rfloor}+2 \sqrt{n}(-1)^{\left\lfloor\frac{j}{2}\right\rfloor}=\left\{\begin{array}{ll}
(-1)^{J}(-(n-1)+2 \sqrt{n}), & \text { if } j=2 J \tag{21}\\
(-1)^{J}(n-1+2 \sqrt{n}), & \text { if } j=2 J+1
\end{array} .\right.
$$

Example 3: For $n=4$ this checks with Example 2.
The remark made above on the ineffectiveness of these formulae for large n computations in connection with R_{n} and I_{n} applies here as well. Here the following section on angles will come to rescue.

2 Angles

a) For the outer spiral the polar angle ϕ_{n} of z_{n} is

$$
\begin{equation*}
\phi_{n}=\sum_{k=1}^{n-1} \alpha_{k}=\sum_{k=1}^{n-1} \arctan \left(\frac{1}{\sqrt{k}}\right), \text { for } n=2,3, \ldots, \tag{22}
\end{equation*}
$$

and $\phi_{1}=0$.
The recurrence is

$$
\begin{equation*}
\phi_{n+1}=\phi_{n}+\alpha_{n}=\phi_{n}+\arctan \left(\frac{1}{\sqrt{n}}\right), \text { for } n=1,2, \ldots, \text { with } \phi_{1}=0 \tag{23}
\end{equation*}
$$

b) For the inner spiral the polar angle $\hat{\phi}_{n}$ of \hat{z}_{n} is (see Figure 3)

$$
\begin{equation*}
\hat{\phi}_{n}=\sum_{k=0}^{n-1} \beta_{k}=\sum_{k=0}^{n-1}\left(2 \alpha_{k+1}-\alpha_{k}\right)=\sum_{k=1}^{n-1} \alpha_{k}+2 \alpha_{n}=\phi_{n}+2 \alpha_{n}=\phi_{n+1}+\alpha_{n}, \tag{24}
\end{equation*}
$$

where $\alpha_{0}=0$ and $n \in \mathbb{N}$.
The explicit form for these angles are obtained from those for R_{n} and I_{n} from equations (6) and (7). For this one needs the number of the sheet in the complex plane where z_{k}, respectively \hat{z}_{k}, lives. The point z_{k} lives on sheet $S_{K(k)+1}$, with $K(k)=\left\lfloor\frac{\phi_{k}}{2 \pi}\right\rfloor$. The number of points z up to, and including, sheet $S_{n}:=\rho e^{i \varphi}$, for $n \in \mathbb{N}$, with $\rho>0$ and $\varphi \in[2(n-1) \pi, 2 n \pi)$ is given by $\underline{\text { A072895 }}(n)$ with $\underline{\text { A } 072895}=$ $[17,54,110,186,281,396,532,686,861,1055, \ldots]$. These numbers are the arguments k where the number n appears for the first time in the sequence $\{K(k)\}_{k \geq 1}$ after subtracting 1 , for $n \in \mathbb{N}$.
For the numbers of points z on sheet S_{n} see A295338(n) with A295338 $=[17,37,56,76,95,115,136,154$, 175, 194, 214, 234, 254 ...] (first differences of A072895).
Depending on the quadrants $I, I I, I I I$, and $I V$ of sheet $S_{K(n)+1}$ (we omit the sheet index on the quadrants) the formula for the angle ϕ_{n} of z_{n} becomes in terms of real and imaginary parts R_{n} and I_{n} on this sheet

$$
\begin{equation*}
\phi_{n}=K(n) 2 \pi+\sigma(n) \pi+\arctan \left(\frac{I_{n}}{R_{n}}\right), \tag{25}
\end{equation*}
$$

with

$$
\sigma(n)= \begin{cases}0 & \text { if } z_{n} \in I, \tag{26}\\ 1 & \text { if } z_{n} \in I I \text { or } I I I, \\ 2 & \text { if } z_{n} \in I V\end{cases}
$$

For example z_{19} lives in quadrant I of sheet S_{2} (because $K(19)=1$) therefore $\phi_{19}=2 \pi+\arctan \left(\frac{I_{19}}{R_{19}}\right)$, with $R_{19} \simeq 4.144473699$ and $I_{19} \simeq 1.350310247$ (Maple 10 digits), leading to $\phi_{19} \simeq 6.598149490$. Here we used R_{n} and I_{n} from eqs. (6) and (7).
But we can now use eq. (25) to compute R_{n} and I_{n} in terms of the reduced angle ϕ_{n} which we denote by φ_{n} :

$$
\begin{gather*}
\varphi_{n}:=\phi_{n}-K(n) 2 \pi, \tag{27}\\
R_{n}=\sqrt{n} \cos \left(\varphi_{n}\right), \text { and } I_{n}=\sqrt{n} \sin \left(\varphi_{n}\right) . \tag{28}
\end{gather*}
$$

Note that these formulae are valid for all four quadrants. They allow fast computation of the real and imaginary part of z_{n} because of the simple recurrence for ϕ_{n} from eq. (23). This shows that there are only $n-1$ arctan terms (like in eq. (22)). For example $R_{100} \simeq 5.481207079$ which needed 0.095 s for Maple13. Similarly for $I_{100} \simeq-8.363992405$, where z_{100}, with $K(100)=2$, lives on sheet S_{3} in quadrant $I V$,
with $\varphi_{100} \simeq 5.292504709$ corresponding to about 303.2°. This fits with $\phi_{100}=6 \pi+\arctan \left(\frac{I_{100}}{R_{100}}\right) \simeq$ 17.85887529 .

Similarly, the point \hat{z}_{k} lives on sheet $S_{\hat{K}(k)+1}$, with $\hat{K}(k)=\left\lfloor\frac{\hat{\phi}_{k}}{2 \pi}\right\rfloor$. The number of points \hat{z} up to, and including, sheet S_{n} is given by A295339 (n) with A295339 $=[15,52,108,184,279,394,530,684,859,1053$, $\ldots]$, and the number of points \hat{z} on sheet S_{n} are given in A296179 (n) with $\underline{\text { A296179 }}=[15,37,56,76,95$, $115,136,154,175,194,214,234,254 \ldots]$. The apparent equality up to the first entry of this sequence with A295338 for points z will be discussed in Section C.
The $\hat{\phi}_{n}$ angle of \hat{z}_{n} is then, depending on the quadrant on sheet $S_{\hat{K}(n)+1}$,

$$
\begin{equation*}
\hat{\phi}_{n}=\hat{K}(n) 2 \pi+\hat{\sigma}(n) \pi+\arctan \left(\frac{\hat{I}_{n}}{\hat{R}_{n}}\right) \tag{29}
\end{equation*}
$$

with $\hat{\sigma}(n)$ like $\sigma(n)$ in eq. (26) with $z \rightarrow \hat{z}$.
Again the real and imaginary parts of \hat{z}_{n} can be computed also for large n from the reduced angle $\hat{\varphi}_{n}$

$$
\begin{equation*}
\hat{\varphi}_{n}:=\hat{\phi}_{n}-\hat{K}(n) 2 \pi, \tag{30}
\end{equation*}
$$

with $\hat{\phi}_{n}$ given in terms of ϕ_{n+1} in eq. (24). They are

$$
\begin{equation*}
\hat{R}_{n}=\sqrt{n} \cos \left(\hat{\varphi}_{n}\right), \text { and } \hat{I}_{n}=\sqrt{n} \sin \left(\hat{\varphi}_{n}\right) . \tag{31}
\end{equation*}
$$

For example, $\hat{R}_{100} \simeq 7.028904480$ is found in $0.108 s$, and also $\hat{I}_{100} \simeq-7.112981218$. \hat{z}_{100} lives on sheet $S_{3}(\hat{K}(100)=2)$ in quadrant $I V$ with $\hat{\varphi} \simeq 5.491842014$ corresponding to about 314.7°. This fits with $\hat{\phi}_{100}=6 \pi-\arctan \left(\frac{\left|\hat{I}_{100}\right|}{\hat{R}_{100}}\right) \simeq 18.05821260$.

3 A conjecture on sequences $\hat{\mathrm{K}}$ and K

The apparent coincidence of A95338 and A296179 up to the first entry follows from the conjecture that $\underline{\text { A295339 }}(k)=\underline{\text { A072895 }}(k)-2$ for $k \in \mathbb{N}$. This, in turn, is equivalent to the following conjecture.
Conjecture:

$$
\begin{equation*}
\mathbf{C}(\mathbf{k}): \quad \hat{K}(k-2)=K(k), \text { for } k \geq 3 \tag{32}
\end{equation*}
$$

This means that if the first appearance of any number m in the sequences \hat{K} is at position, say $\mathrm{p}(\mathrm{m})$, then it is in sequence K at position $p(m)+2$. Then the first differences of A072895 and A295339 coincide up to the first entry.
In order to analyze this conjecture we first use a simple consequence of the definition of $\hat{\phi}$ of eq. (24).
Lemma 1:

$$
\begin{equation*}
\hat{\phi}_{k-2}-\phi_{k}=\alpha_{k-2}-\alpha_{k-1}=: \Delta_{k}=\arctan \left(\frac{\sqrt{k-1}-\sqrt{k-2}}{1+\sqrt{(k-1)(k-2)}}\right)>0, \text { for } k \geq 3 . \tag{33}
\end{equation*}
$$

Proof:

By eq. (24) $\hat{\phi}_{k-2}=\phi_{k-1}+\alpha_{k-2}=\left(\phi_{k}-\alpha_{k-1}\right)+\alpha_{k-2}$, by eq. (23). Δ_{k} is obviously positive because $\alpha_{k}=\arctan \left(\frac{1}{\sqrt{k}}\right)$, and arctan is strictly increasing, staying below $\frac{\pi}{2}$. The explicit form results from the formula for $\arctan (x)-\arctan (y)$ if $x y>-1$, which is satisfied.

Consider, for $k \geq 3$, the interval $\left[\left\lfloor\frac{\phi_{k}}{2 \pi}\right\rfloor,\left\lfloor\frac{\phi_{k}}{2 \pi}\right\rfloor+1\right]$ with the interior point $\frac{\phi_{k}}{2 \pi}$. The conjecture means that $\frac{\hat{\phi}_{k-2}}{2 \pi}$ is a point in the open interval $\left(\frac{\phi_{k}}{2 \pi}, K(k)+1\right)$ due to Lemma 1. That is $\Delta_{k}<$ $2 \pi\left((K(k)+1)-\frac{\phi_{k}}{2 \pi}\right)=2 \pi\left(1-\operatorname{frac}\left(\frac{\phi_{k}}{2 \pi}\right)\right)$. Alternatively this means that the conjecture is

$$
\begin{equation*}
\hat{\phi}_{k-2}=\phi_{k}+\Delta_{k}<2 \pi(K(k)+1), \text { for } k \geq 3 \tag{34}
\end{equation*}
$$

This is considered for the quadrants of the sheet $S_{K(k)+1}$ on which z_{k} lives. It turns out that the conjecture can be proved for quadrants $I, I I$ and $I I I$. For quadrant $I V$ a stronger conjecture will be given.

Proposition 4: Proof of the conjecture for quadrants I, II and III

The conjecture, that is eq. (34), is true for points z on quadrants $I, I I$ or $I I I$ of the complex plane.

Proof:

i) Quadrant I : From eq. (25), with eq. (26), $\phi(k)+\Delta_{k}=\left(K(k) 2 \pi+\arctan \left(\frac{I_{k}}{R_{k}}\right)\right)+\Delta_{k}$. Therefore the conjecture eq. (34) becomes

$$
\begin{equation*}
\Delta_{k}+\arctan \left(\frac{I_{k}}{R_{k}}\right)<2 \pi \tag{35}
\end{equation*}
$$

With the explicit form of Δ_{k} from eq. (33) the addition formula $\arctan (x)+\arctan (y)$ is applied which depends for $x=\frac{\sqrt{k-1}-\sqrt{k-2}}{1+\sqrt{(k-1)(k-2)}}>0$ on whether $x y<1$ or $x y>1$. If the first case should apply one will obtain arctan with the positive argument $\frac{x+y}{1-x y}$ with $y=\frac{I_{k}}{R_{k}}>0$ (for $k \geq 3$), which is $<\frac{\pi}{2}<2 \pi$, and the conjecture is true. In the second case the result is $\pi-\arctan \left(\frac{x+y}{x y-1}\right)$, again with a positive argument, name it X, and eq. (34) becomes $\arctan (X)>-\pi$ which is trivially satisfied because $\arctan (X)>0$.
ii) Quadrant $I I$: From eq. (25), with eq. (26), $\phi(k)+\Delta_{k}=\left(2 \pi K(k)+\pi-\arctan \left(\frac{I_{k}}{\left|R_{k}\right|}\right)\right)+\Delta_{k}$. Therefore the conjecture eq. (34) becomes arctan $\left(\frac{I_{k}}{\left|R_{k}\right|}\right)-\Delta_{k}>-\pi$. The arctan difference formula applies because the product $x y>0>-1$. Whatever sign the new arctan argument may have the new arctan will be $>-\frac{\pi}{2}$, hence $>-\pi$, and the conjecture is true.
iii) Quadrant III: Here the conjecture becomes $\Delta_{k}+\arctan \left(\frac{\left|I_{k}\right|}{\left|R_{k}\right|}\right)<\pi$. If $x y<1$, with $x=$ $\frac{\sqrt{k-1}-\sqrt{k-2}}{1+\sqrt{(k-1)(k-2)}}>0$ and $y=\frac{\left|I_{k}\right|}{\left|R_{k}\right|}>0$, then one obtains, after applying the formula for $\arctan (x)+\arctan (y)$, the new arctan argument, name it X, which is >0, and the conjecture is true because $\arctan (X)<\frac{\pi}{2}<\pi$.
In the case $x y>1$ one obtains $+\pi-\arctan (Y)$ with a $Y>0$, and this satisfies the conjecture because $\arctan (Y)>0$.

The situation for quadrant $I V$ is different. The conjecture eq. (34) is now, with $x>0$ as above in case iii) and $y=\frac{\left|I_{k}\right|}{R_{k}}>0,-\arctan (y)+\arctan (x)=\arctan \left(\frac{x-y}{1+x y}\right)<0$ (the arctan difference formula needed $x y>0>-1$). Because the denominator of the argument is positive the conjecture reduces to $y-x>0$, that is,

$$
\begin{equation*}
\mathbf{C}_{\mathbf{I V}}(\mathbf{k}): \quad \frac{\left|I_{k}\right|}{R_{k}}-\frac{\sqrt{k-1}-\sqrt{k-2}}{1+\sqrt{(k-1)(k-2)}}>0, \text { for } k \geq 3 \tag{36}
\end{equation*}
$$

Lemma 2: Strictly decreasing x_{k}

$x_{k}:=\frac{\sqrt{k-1}-\sqrt{k-2}}{1+\sqrt{(k-1)(k-2)}}$ is strictly decreasing for $k \geq 2$.

Proof:

i) $1+\sqrt{k(k-1)}>1+\sqrt{(k-1)(k-2)}$ because, from the strict monotonicity of \sqrt{x} for $x \geq 0$, this leads to $k(k-1)>(k-1)(k-2)$, i.e., $k>1$, satisfied for $k \geq 2$.
ii) $\sqrt{k}-\sqrt{k-1}<\sqrt{k-1}-\sqrt{k-2}$, i.e., $k(k-2)<(k-1)^{2}$, i.e., $0<1$. Therefore, $x_{k+1}<x_{k}$ for $k \geq 2$.
From this follows that the second term on the l.h.s. of eq. (36), $x(k)$, takes its largest value in quadrant $I V$ on sheet S_{n} for the first point $z_{\tilde{k}}=z_{\tilde{k}(n)}$ in this quadrant. The corresponding sequence $\{\tilde{k}(n)\}_{n \geq 1}$ is obtained from the sequence $\{K I V(k)\}_{k \geq 1}$ with

$$
\begin{equation*}
K I V(k):=\left\lfloor\frac{\phi_{k}-\frac{3 \pi}{2}}{2 \pi}\right\rfloor+1, \tag{37}
\end{equation*}
$$

by recording the positions where it becomes n for the first time. This is the sequence $\mathrm{A} 296181(n)$, for $n \geq 1$, with A296181 $=[12,44,95,166,256,367,497, \ldots]$.
The first term on the l.h.s. of eq. (36), i.e., $\tan \left(\gamma_{k}\right):=\frac{\left|I_{k}\right|}{R_{k}}$, with $\gamma_{k}=2 \pi-\varphi_{k}$, an angle in quadrant $I V$ of sheet $S_{K(k)+1}$ counted in the negative sense from the positive real axis of the next sheet, is smallest if γ_{k} is smallest, i.e., if z_{k} is nearest to this real axis. This happens on sheet S_{n} for $z_{k(n)}$ with $k(n)=\underline{A 07295}(n)$, for $n \geq 1$. We now propose a stronger conjecture then $C_{I V}(n)$, i.e.,

$$
\begin{equation*}
\mathbf{C I V}_{\text {new }}(\mathbf{n}): \quad \tan \left(2 \pi-\varphi_{k(n)}\right)>x_{\tilde{k}(n)}, \quad \text { i.e., } \quad \gamma_{k(n)}=2 \pi-\varphi_{k(n)}>\arctan \left(x_{\tilde{k}(n)}\right), \quad n \geq 1 \tag{38}
\end{equation*}
$$

with $k(n)=\underline{\operatorname{A072895}}(n)$ and $\tilde{k}(n)=\underline{\text { A296181 }}(n)$, with φ_{k} from eq. (27) and x_{k} from Lemma 2.
Proposition 5: $\operatorname{CIV}_{\text {new }}(\mathrm{n}) \Rightarrow \operatorname{CIV}(\mathrm{k})$
If $\mathbf{C I V}_{\text {new }}(\mathbf{n})$ holds for all $n \in N$ then $\mathbf{C I V}(\mathbf{k})$ holds for all $k \in N$.

Proof:

i) For all z_{k} in quadrant $I V$ of sheet $S_{n}: \gamma_{k} \geq \gamma_{k(n)}$. This is obvious from the definition of $k(n)$ as largest k value for z_{k} on sheet S_{n} (automatically in quadrant $I V$, nearest to the positive real axis of sheet S_{n+1}), because $\gamma_{k}=2 \pi-\varphi_{k}$ decreases with increasing k.
ii) For all z_{k} on quadrant $I V$ of sheet $S_{n}: x_{\tilde{k}} \geq x_{k}$. This is clear from Lemma 2 and the remark following it.
Thus, for all z_{k} in quadrant $I V$ of sheet S_{n}, for $\left.n \in \mathbb{N}: \gamma_{k} \geq \gamma_{k(n)} \stackrel{!}{>} \arctan \left(x_{\tilde{k}(n)}\right) \geq \arctan \left(x_{k}\right)\right)$, because arctan is (strictly) increasing.

Note: The largest value for x_{k} of Lemma 2 with z_{k} in quadrant $I V$ appears of course on sheet S_{1}, and for $k=12$. It is tempting to propose instead of conjecture $C I V_{\text {new }}(n)$ for z_{k} in quadrant $I V$ on sheet S_{n} the conjecture $\tan \left(\gamma_{k(n)}\right) \stackrel{?}{>} x_{12} \simeq 0.01343540575$ (Maple 10 digits), with $k(n)=\underline{A 072895}(n)$. However, this conjecture is already false for sheet S_{2}, because $\tan \left(\gamma_{54}\right) \simeq 0.004555785878$ (Maple 10 digits). But $x_{\tilde{k}(2)}=x_{44} \simeq 0.001763287640$ and conjecture $C I V_{\text {new }}(2)$ is true.

References

[1] J. H. Anderhub, Genetrix Irrationalium, in: Jaco-Seria, aus den Papieren eines reisenden Kaufmanns, Ausgabe der Kalle-Werke, Wiesbaden-Biebrich, 1941.
[2] Ph. J. Davis, Spirals. From Theodorus to Chaos, A K Peters, Wellesley. MA, USA, 1993.
[3] Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, p. 7, pp. 272-277.
[4] Edmund Hlawka, http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002481898, Gleichverteilung und Quadratwurzelschnecke, Monatsh. Math., 89 (1980) 19-44.
[5] Platon, Theätet, Θ EAITHTO , Philipp Reclam jun. Stuttgart, 1981, p. 20 (Greek), 21 (German) [147 d]. For an English version see Davis [2], pp. 131-135.
[6] B. L. van der Waerden, Erwachende Wissenschaft, Birkhäuser, Basel und Stuttgart, 1956, pp. 235240, engl.: Science Awakening, Springer, 1973, pp. 141-6.
[7] J. Waldvogel, http://www.sam.math.ethz.ch/~joergw/Papers/theopaper.pdf, Analytic Continuation of the Theodorus Spiral, ETH Zürich, 2009.
[8] Wikipedia, http://en.wikipedia.org/wiki/Spiral_of_Theodorus, Spiral of Theodorus.

AMS MSC numbers: 97N70.
Keywords: Discrete Theodorus spiral.

Concerned with OEIS sequences: $\underline{\text { A072895, A172164, A295338, } \underline{\text { A295339, }} \underline{\underline{A 296179}}, \underline{\text { A296181 }} . ~}$

Figure 1: Outer discrete Theodorus spiral, Figure 2: Inner discrete Theodorus spiral, $n=1 . .17$ $n=1 . .15,\left(Z_{n}=\hat{z}_{n}\right)$

Figure 3: Inner spiral point construction
$\left(Z_{2}=\hat{z}_{2}, \alpha=\alpha_{2}, p h i_{-} n=\phi(n), P h i_{-} 2=\hat{\phi}(2)\right)$

[^0]: ${ }^{1}$ wolfdieter.lang@partner.kit.edu, http://www/kit.edu/~wl/

