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Abstract

The standard formula for the multi-section of the general linear three-term recurrence relation is
simplified in terms of Chebyshev S-polynomials.

1 Introduction

The m−section (multi- or modular-section) of an integer sequence consists of set of m sequences
which carry as indices the equivalence classes modulo m.
The general decomposition of the ordinary generating function (o.g.f.) of the sequence into the m o.g.f.s
of the members of the set of m−sections is given in terms of a special m × m Vandermonde matrix.
The inverse of this matrix gives the o.g.f.s of these members in terms of the o.g.f. of the sequence. The
computation which brings these m fractions into one, either by hand (tedious) or by computer, does not
give an insight into the structure of this final rational fraction.
For the general sequence satisfying a linear three-term recurrence relation (called Horadam-sequence) it
is shown that the result for the o.g.f.s of the m−section sequences can be given in terms of Chebyshev-S
(and -R polynomials, the monic T -polynomials, which are a difference of two S-polynomials).
This is achieved by a proposal for the m-section of the Horadam sequence, first a conjecture for the first
element of this section by one of the authors (G. D.), then generalized for all elements, and later proved
by the second author.

The first section summarizes the standard treatment of the m-section of a sequence and the o.g.f.s. The
second section is a reminder of some elementary properties of the Horadam sequence. In the third section
the conjectures for the m-section of this sequence are formulated, and the last section gives the proof of
these conjectures.
The proof uses a lemma a (known) alternative bisection of the Chebyshev-S polynomials (not the one
obtained for improved m = 2 case).

2 Multi-Section of a sequence

This section is a reminder of the standard treatment of the m−section of a sequence.
The ordinary generating function (o.g.f.) G(m, l, x) =

∑∞
n=0 a(mn+ l)xn of the lth part of the m-section

of a sequence {a(n)}n>=0 with o.g.f.G(x) =
∑∞

n=0 a(n)x
n, for integer m ≥ 2 and l ∈ {0, 1, ..., m−1 },

satisfies

G(x) =
m−1∑

l=0

G(m, l, xm)xl . (1)

For the solution of G(m, l, x) for given G(x) one uses the roots of the polynomial xm − 1, that is
w(m, k) = e2πk/m, for k ∈ {0, 1, ..., m− 1 }, and considers the inhomogeneous system of m equations,
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for k ∈ {0, 1, ..., m−1 }, for the m unknowns {G(m, l, x)}m−1
l=0 ,using a Vandermonde matrix Vm(x) with

elements
[Vm(x)]k,l = (w(m, k)x)l, (2)

as
m−1∑

l=0

[Vm(x)]k,l G(m, l, xm) = G(w(m, k)x) (3)

Note that (w(m, k)x)m = xm has been used.
The inverse of a general Vandermonde matrix is known. e.g., [5], and for the present case its elements
become

[V −1
m (x)]l,j = N(m, l, j, x)/DN(m, j, x), (4)

with denominator
DN(m, j, x) = xm−1

∏

0≤ <i 6= j≤m−1

(w(m, i) − w(m, j)), (5)

and numerator

N(m, l, j, x) = (−1)l xm−1−l

#Ch(m,l,j)∑

n=1

m−1−l∏

k=1

(Ch(m, l, j)[n])[k], (6)

where the list of lists (order respected, and the kth elements of a list L is denoted by L[k])

Ch(m, l, j) = choose(P (m, j),m − 1− l), (7)

with the list
P (m, j) = [w(m, 0), ..., w(m, j − 1), w(m, j + 1), ..., w(m, m− 1)] . (8)

The length of list Ch(m, l, j) is #Ch(m, l, j) =
(m−1

l

)
and the length of the lists of Ch(m, l, j) is m−1− l

with #P (m, j) = m− 1.
Thus, using new arguments x → x1/m, one obtains, for l ∈ {0, 1, ..., m− 1 }

G(m, l, x) =

m−1∑

j=0

[V −1
m (x1/m)]l,j G(w(m, j)x1/m). (9)

Example 1: m = 3

With w(3, 0) = 1, w(3, 1) = w = 1
2(−1 +

√
3 i) and w(3, 2) = w = −1

2(1 +
√
3 i) one finds

[V −1
3 (x)]1,2 = w/(3x), because DN(3, 2, x) = x2 (1 − w) (w − w) = x2 1

2 (3 + i
√
3) i

√
3 = 3w x2, and

from P (3, 2) = [1, w], and Ch(3, 1, 2) = [[1], [w]] one obtains N(m, l, j, x) = (−1)1 x (1 + w) = xw.
Indeed, [V −1

3 (x)]1,2 = w/(3w) = w/(3x), due to w2 = w.

V −1
3 (x) =

1

3




1 1 1
1/x w/x w/x
1/x2 w/x2 w/x2


 . (10)

Therefore the standard trisection of G(x) is

G(3, 0, x) =
1

3

(
G(x1/3) + G(w x1/3) + G(w x1/3)

)
, (11)

G(3, 1, x) =
1

3x

(
G(x1/3) + wG(w x1/3) + wG(w x1/3)

)
, (12)

G(3, 2, x) =
1

3x2

(
G(x1/3) + wG(w x1/3) + wG(w x1/3)

)
. (13)

This should then be simplified for given G(x), by finding the rational function P (x)/Q(x) which can
become tedious in the general m-section case (the computer will help).

2



The topic of this paper is to give for the general linear three-term recurrence relation the coefficients of
these polynomials P and Q in terms of well known polynomials which are functions of the signature of
this recurrence.

3 General linear three term recurrence

This section is a review of basic formulas for the considered recurrence relation.
The sequence {H(p, q; r, s;n)}∞n=0 satisfies the following linear three- term (also called second order)
recurrence relation of signature (r, s), with integer numbers r and s, both non-vanishing, and initial
conditions (seeds or inputs) (p, q), with integer numbers p and q. Only integer sequences are considered.
In the following these domains for p, q, r, s will not be repeated in the formulas.
The letter H is used because this sequence has been studied by A. F. Horadam in many publications.
See e.g., [2], [3],[4], and also [9].

H(p, q; r, s; n) = rH(p, q; r, s; n− 1) + sH(p, q; r, s; n− 2), for n ≥ 2, and (14)

H(p, q; r, s; 0) = p, H(p, q; r, s; 1) = q. (15)

It is sufficient to consider the seeds (p, q) = (0, 1), naming the sequence {H01(r, s; n)}∞n=0, because

H(p, q; r, s; n) = q H01(r, s; n) + p sH01(r, s; n− 1). (16)

Also H01(r, s;−1) = 1/s and H01(r, s;−2) = −r/s2 will be used.
One can also extend this sequence to all negative integer n, by

H01(r, s; n) = −(−s)nH01(r, s; −n), (17)

which implies the result for negative indices for sequence H.

The Binet - de Moivre formula is

H01(r, s;n) =
λ(r, s)n − (−s/λ(r, s))n

λ(r, s) − (−s/λ(r, s))
, where λ(r, s) =

1

2

(
r −

√
r2 + 4 s

)
. (18)

The transfer matrix, also called Q matrix, for the (r s) recurrence relation is

Q =

(
r s
1 0

)
. (19)

The powers of this 2× 2 matrix with trace TrQ = r and determinant DetQ = −s 6= 0, can be found
with the help of the Cayley-Hamilton Theorem in terms of Chebyshev S-polynomials by

Qn(r, s) = (
√
−s)n

[
S

(
n,

r√
−s

)
1 + S

(
n− 1,

r√
−s

)
1√
−s

(Q(r, s) − r 1)

]
. (20)

For the Chebyshev S-polynomials see OEIS [7] A049310 for their coefficients, their properties, and refer-
ences, e.g., [1], [8]. OEIS A-number links will henceforth be used without citation.

S(n, x) := H(1, x;x,−1; n), for n ≥ 0. (21)

For negative n one finds S(−1, x) = 0, and S(n, x) = −S(−n− 2, x), for n ≤ −2.

This produces the matrix

Qn(r, s) = (
√
−s)n


 S

(
n, r√

−s

)
s√
−s

S
(
n− 1, r√

−s

)

1√
−s

S
(
n− 1, r√

−s

)
−S

(
n− 2, r√

−s

)

 . (22)
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The (generalized) Chebyshev T -polynomials are defined from the trace as

T

(
n,

r

2
√−s

)
:=

1

2
TrQn(r, s) =

1

2

(
S

(
n,

r√−s

)
− S

(
n− 2,

r√−s

))
. (23)

For (r, s) = (x,−1) these are the usual Chebyshev T -polynomials: T (n, x/2) = 1
2 (S(n, x)− S(n−2, x)).

Later R(n, x) = T (n, x/2)/2 will be used.
Because DetQ(s, r) = −s one has DetQn(s, r) = (−s)n, by the product theorem for determinants,
and this leads to the Cassini-Simson identity in n and (r, s) (with n → n+ 1)

S(n, y)2 − S(n− 1, y)S(n + 1, y) = 1, (24)

where r and s only enter via y = y(r, s) = r√
−s

.

A further reduction of the H01 sequence, important for the main part of this paper, is possible in terms
of the usual Chebyshev S-polynomials by

H01(r, s;n) = (
√
−s )n−1 S

(
n− 1,

r√
−s

)
. (25)

This follows from comparing the recurrence and the seeds.

The ordinary generating functions (o.g.f.) of {H01(r, s;n}∞n=0 is

GH01(r, s;x) =
x

1 − r x − s x2
. (26)

The o.g.f. of {H(p, q; r, s;n}∞n=0 in terms of GH01(r, s;x) is

GH(p, q; r, s;x) = p+ (q + p s x)GH01(r, s;x), (27)

=
p − (p r − q)x

1 − r x − s x2
. (28)

The o.g.f. of {S(n, y}∞n=0 is

GS(x) =
1

1 − y x + x2
. (29)

4 Conjecture for improved formulas for the m-section of the linear

three -term recurrence sequences

This section contains conjectures for simplified formulas for the m-section or the special sequences H,
H01 and S. In the next section these conjectures will be proved.

One of the authors (G. D.) heuristically found a formula for the sequence {H(p, q; r, s; mn)}∞n=0 , for
m ≥ 0, that identifies it as an H sequence with different input (p, q′) and signature (r′, s′). See his
comment in A034807 where p, q, r, s are denoted as a, b, c, d, respectively.
The second author generalized this conjecture to the m-section of the sequence H and their o.g.f.s. He
also proved a conjecture for the sequence H01 which implies the one for H. In the next section the proof
will be given for the conjecture for the m section of Chebyshev S-polynomials and the o.g.f.s., that will
lead to the other two conjectures.

Conjecture for H

For n ≥ 0, m ≥ (1), 2 and l ∈ {0, 1, ..., m− 1 }
H(p, q; r, s; mn+ l) = H(H(p, q; r, s; l),H(p, q; r, s; m+ l);SUM(r, s; m),−(−s)m; n) . (30)
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with

SUM(r, s; m) = rm
⌊m

2
⌋∑

k=0

A034807(m, k) (s/r2)k . (31)

Therefore SUM(r, s; m) is the polynomial P (m, x) of row m of this irregular triangle evaluated at
x = s/r2 and scaled by rm.

Note that the symmetry between n and m for the left-hand side is not obvious for the right-hand side ,
but true because the later proof can be done with interchanged n and m. This symmetry holds for all
versions of the conjecture given later.

The recurrence relation for the triangle T =A034807 (given there by Michael Somos, given here without
proof) is

T (n, k) = T (n− 1, k) + T (n− 2, k − 1), for n ≥ 2, and

T (0, k) = 2, for k = 0, otherwise 0,

T (1, k) = 1, for k = 0, otherwise 0. (32)

The explicit form (given in A034807 by Alexander Elkins, here also given without proof) is

T (n, k) =
n (n− 1− k)!

k! (n − 2 k)!
, for n ≥ 1, k = 0, 1, ..., ⌊n/2⌋ and T(0, 0) = 2 . (33)

The o.g.f. for the row polynomials {P (n, y)} of T (the o.g.f. of the triangle) (given there by Vladeta
Jovovic, here given also without proof) is

2 − x

1 − x − y x2
. (34)

Lemma 1

i) SUM(r, s; m) = H(2, r; r, s; m), (35)

ii) = sH01(r, s; m− 1) + H01(r, s; m+ 1), (36)

iii) = (
√
−s )mR

(
m,

r√
−s

)
, with R(n, x) := S(n, x) − S(n− 2, x) . (37)

The polynomials R are the monic Chebyshev T -polynomials. See A127672 for their coefficients and
properties.

Proof

i) This follows from the definition of SUM in Eq. 31 and the recurrence of the irregular triangle T given
in Eq. 32, leading to the signature (r, s), and the inputs SUM(r, s; 0) = 2 and SUM(r, s; 1) = r.

ii) Results after replacing the sequence H by H01 according to Eq. 16.

ii) Uses the replacement of the sequence H01 by the Chebyshev S-polynomials , Eq. 25, evaluated at x =
r/
√
−s. �

Example 2: Fibonacci trisection

F (n) = H(0, 1; 1, 1; n) =A000045(n), for n ≥ 0. The first part of the trisection (m = 3, l = 0) is
F (3n) =A014445(n) = {0, 2, 8, 34, 144, ...}. The conjecture leads to
F (3n) = H(0, F (3); −iR(3, 1/

√
−1 ),−(−1)3; n), where R(3, −i) = 4 i. F (3n) = H(0, 2; 4, 1; n).

In terms of H01 this becomes F (3n) = 2H01(4, 1; n).
In terms of S one finally finds F (3n) = 2 in−1 S(n− 1,−4 i).
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The other parts of the trisection F (3n + 1) =A033887(n) and F (3n + 2) =A015448(n + 1), for
n ≥ 0,follow similarly, and the results are

F (3n) = H(0, 2; 4, 1; n) = 2H01(4, 1; n) = 2 in−1 S(n − 1,−4 i), (38)

F (3n + 1) = H(1, 3; 4, 1; n) = H01(4, 1; n+ 1) − H01(4, 1; n) (39)

= −in (S(n, −4 i) + i S(n − 1, −4 i)),

F (3n + 2) = H(1, 5; 4, 1; n) = H01(4, 1; n+ 1) + H01(4, 1; n) (40)

= in (S(n, −4 i) − i S(n − 1, −4 i)) .

The above conjecture for H is equivalent to the one for its o.g.f.

GHml(p, q; r, s;m, l; x) :=

∞∑

n=0

H(p, q; r, s; mn + l)xn . (41)

Conjecture for GHml

GHml(p, q; r, s;m, l; x) =
H(p, q; r, s; l) − (H(p, q; r, s; l)SUM(r, s; m) − H(p, q; r, s; m+ l)) x

1 − SUM(r, s; m)x + (−s)m x2
.

(42)
Proof: This equivalence of conjectures is clear from the o.g.f. of the sequence H given in Eq. 28. One has
just to insert the conjectured values for the inputs and signature from Eq. 30 �

Example 3: O.g.f. Fibonacci trisection

For m = 3, (p, q) = (0, 1) and (r, s) = (1, 1) the denominator of GF3l(x) :=
∑∞

n=0 F (3n + l)xn is
1 − (−iR(3, 1/i))x + (−1)3 x2 = 1 − 4x − x2, for l = 0, 1 and 2. The numerators are F (3)x = 2x,
1 − (1 · 4 − 3)x = 1 − x, and 1 − (1 · 4 − 5)x = 1 + x, for these l values, respectively.

The conjecture for the m-section of H implies the one for H01, and the corresponding o.g.f.s, are obtained
setting (p, q) = (0, 1), and then rewriting H in terms of H01 using Eq. 16 with the new parameters. In
Example 2 this second step has been used for m = 3 and (r, s) = (1, 1).

Conjecture for H01

H01(r, s; mn + l) = q′H01(r′, s′; n) + p′ s′H0(r′, s′; n− 1) , where

p′ = p′(r, s; l) = H01(r, s; l), q′ = p′(r, s; m+ l) = H01(r, s; m+ l),

r′ = r′(r, s; m) = (
√
−s )mR(m, r/

√
−s ), s′ = s′(s, m) = −(−s)m. (43)

The part l = 0 simplifies to

H01(r, s; mn) = H01(r, s; m)H01((
√
−s )m R(m, r/

√
−s ), −(−s)m; n) . (44)

Conjecture for GH01ml

The conjecture for the o.g.f.GH01ml(r, s;m, l; x) :=
∑∞

n=0H01(r, s;mn+l)xn is obtained fromGHml(x)
in Eq. 42, and is given with y = y(r, s)/

√
−s as

GH01ml(r, s;m, l; x) =
H01(r, s; l) − ((

√
−s )mH01(r, s; l)R(m, y) − H01(r, s; m + l))x

1 − (
√−s )mR(m, y)x + (−s)m x2

. (45)

Because the sequences H and H01 are determined by the Chebyshev polynomials {S(n, y = r/
√−s )}

the conjecture for S(mn + l, r/
√−s ) is fundamental.
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Conjecture for S

For n ≥ 0, m ≥ (1), 2 and l ∈ {0, 1, ..., m− 1 }:

S(mn + l, y) = c(s, m)n−1 {S(m + l, y)S(n− 1, c(s, m)R(m, y))

− c(s, m)S(l, y)S(n− 2, c(s, m)R(m, y))} , (46)

with y = r/
√
−s, c(s, m) :=

(
√
−s )m√
(−s)m

, S(−2, y) = −1, and S(−1, y) = 0 .

The part l = 0 simplifies, using c(s, m)2 = 1, the recurrence relation of S and then the definition of R,
to

S(mn, r/
√
−s) = (c(s, m))n ·

·{S(n, c(s, m)R(m, r/
√
−s)) + c(s, m)S(m− 2, r/

√
−s )S(n− 1, c(s, m)R(m, r/

√
−s ))}.(47)

The following proof that this conjecture is equivalent to the conjecture for H01 uses y = r/
√
−s and

Eq. 25.

Proof of the equivalence between the conjectures H01 and S

With y = r/
√
−s and Eq. 25 S(mn + l, y) = (1/

√
−s )mn+ l)H01(r, s;mn + l + 1). With the

conjecture for H01 from above this becomes in terms of S, again using Eq. 25,

(
√
−s )mn+ l S(mn + l, y) = q̂′ (

√
−s′ )n−1 S(n− 1, r′/

√
−s′ )

+ p̂′ s′ (
√
−s′ )n−2 S(n− 2, r′/

√
−s′ ) ,

with r′, s′, p′ and q′ from Eq. 43, and q′ and p′ are written in terms of S as q̂′ =
√−sm+l S(m + l, y)

and p̂′ =
√−s l S(l, y). Also r′/

√
−s′ = c(s,m)R(m, y).

Dividing both sides by (
√−s )m+ l (

√
(−s)m ) n−1 produces

c(s,m)n−1 S(mn + l, y) = {S(m + l, y)S(n − 1 c(s,m)R(my))

− (1/c(s,m))S(l, y)S(n − 2, c(s,m)R(m, y))} . (48)

Because c(s,m)2 = 1 one replaces 1/c(s, m) by c(s, m), giving the final result. �

Note that c(s, m) has only values from {+1, −1}. c(−1, m) = 1, for m ≥ 1, and {c(1, m)}m≥ 1 =
repeat {1, −1, −1, 1} = A087960 with offset 1.

Example 4: Trisection of Chebyshev S-polynomials

m=3,r= y, s= -1. Note that y is now an indeterminate.
l = 0 : S(mn, y) = S(n, R(3, y)) + y S(n − 1, R(3, y)), with R(3, y) = y (y2 − 3).
l = 1 : S(mn + 1, y) = S(4, y)S(n− 1, R(3, y))− y S(n− 2, R(3, y))), with S(4, y) = 1 − 3 y2 + y4.
l = 2 : S(mn + 2, y) = S(2, y) (R(3, y)S(n−1, R(3, y)) − S(n−2, R(3, y)) = S(2, y)S(n, R(3, y)),
because S(5, y) = S(2, y)R(3, y), and S(2, y) = y2 − 1.

The conjecture for the o.g.f.GSml(r, s;m, l; x) :=
∑∞

n=0 S(mn + l, y = r/
√−s )xn is obtained from

the one for GHml(x) given above.

Conjecture for GSml

With y = r√
−s

:

GSml(r, s;m, l; x) =
1

(
√
−s )l

GH01ml

(
r, s;m, l + 1;

x

(
√
−s )m

)
,

=
S(l, y) − (S(l, y)R(m, y) − S(m + l, y))x

1 − R(m, y)x + x2
. (49)
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Note that the advantage of working with the o.g.f.s instead of the sequences is that the (r, s) dependence
appears only in y (not like in Eq. 46 also in c(s, m)).

Exercise

In order to appreciate these formulas on should compare them with the standard computation according
to Section 2. Done either by hand or by computer the result will not be expressed in terms of Chebyshev
polynomials.

Proof of the equivalence between GSml and GH01ml

This uses the relation between S(n, y) and H01(r, s; n+1) obtained from Eq. 25, for n → mn + l. This
leads to the relation between the o.g.f.s. Then in Eq. 45 the H01 sequences are rewritten in terms of S,
with y = r/

√−s. �

Example 5: O.g.f.s for the trisection of Chebyshev S polynomials

m = 3, r = y, s = −1. Note that y is now an indeterminate.
l = 0 : GS30(y, x) = (1 − (R(3, y) − S(3, y))x)/(1 − R(3, y)x + x2), With R(3, y) from above
in Example 4, and S(3, y) = y R(2, x) = y (y2 − 2) one obtains R(3, y) − S(3, y) = −y, hence
GS30(y, x) = (1 + y x)/(1 − y (y2 − 3)x + x2).
l = 1: In the numerator appears y R(3, y) − S(4, y) = −1. Hence
GS31(y, x) = (y + x)/(1 − y (y2 − 3)x + x2).
l = 2: In the numerator appears S(2, y)R(3, y) − S(5, y) = 0 (see Example 4). Hence
GS32(y, x) = (y2 − 1)/(1 − y (y2 − 3)x + x2).

5 Proof of the conjectures

The proof is given for the conjectured o.g.f.s, equivalent to the conjectures for the corresponding sequences.
Here the proof for the conjecture of the o.g.f. of the sequence S, i.e.,GSml of Eq. 49, is given which is
equivalent to the o.g.f. of sequence H01, i.e.,GH01ml of Eq. 45.
The conjecture for the o.g.f. of the sequence H, i.e.,GHml of Eq. 42, follows from the conjecture of GSml
by

GHml(p, q; r, s;m, l; x) = q (
√
−s )l−1 GSml

(
r, s;m, l − 1; (

√
−s )m x

)

+ p s (
√
−s )l−2GSml

(
r, s;m, l − 2; (

√
−s )m x

)
. (50)

Note that for m ≥ 2 and l = 0 and 1 the sequences H, H01 and S appear also with negative indices
n = −1 and −2, namely H01(r, s;−1) = 1/s, S(−2, x) = −1 and S(−1, x) = 0.

This GHml formula coincides with the original one of Eq. 42, after sequence H is replaced by sequence
H01, and then by sequence S.

Theorem: The conjecture for the o.g.f.GSml of {S(mn + l, r/
√
−s )}∞n=0 is true.

Proof:

One proves that the o.g.f.GS(y, x) = 1/(1 − y x + x2) for the Chebyshev polynomials {S(n, y)}∞n=0,
with y = r/

√−s, satisfies the m−section formula according to Eq. 1 in terms of the conjectured part l
o.g.f.s GSml from Eq. 49. This can be rewritten, by bringing the identical (l-independent) denominators
of GSml to the left hind side, and the denominator of GS(y, x) to the right-hand side as

LHS(m, l; y, x) := 1 − R(m, y)xm + x2m,

RHS(m, l; y, x) := (1 − y x + x2)

m−1∑

l=0

xl N(m, l; y, xm),

with N(m, l; y, xm) = S(l, y) − (S(l, y)R(m, y) − S(m+ l, y))xm . (51)
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Remember that by working with o.g.f.s instead of sequences the (r, s) dependence appears only y. There-
fore the proof will be given for the indeterminate y.

Because the Vandermonde matrix has an inverse (see Eq. 4) the proof will automatically hold also for
GSml in terms of GS like in Eq. 9.

All powers of x will be compared on both sides in order to prove that LHS = RHS.
In RHS all powers x0, x1, ..., xm, ..., x2m, x2m+1 appear. In LHS only x0, xm, x2m are present.
It will turn out that the proof for the two highest powers x2m+1 and x2m differs from the one for the other
powers. Usually the recurrence of the Chebyshev S polynomials will show directly that RHS − LHS = 0
but for the two highest powers one has to use results from the bisection of these polynomials.
For the other powers the contribution of the R terms in the numerator N of GSml will be considered
separately from the remainder (pure S terms). For the powers xm to x2m−1 it will turn out that the R
terms are multiplied by factors which vanish because of the recurrence of the S-polynomials (the structure
of R will thus be irrelevant).

One starts with the two highest powers.
For x2m+1 only RHS is present, namely −(S(m− 1, y)R(m, y) − S(2m − 1)). It vanishes if

S(2m − 1, y) = S(m− 1, y)R(m, y) . (52)

For x2m the RHS becomes (-y) {-(S(m-1, y)R(m, y) - S(2m - 1, y))}+(+1) {-(S(m-2, y)R(m, y) -
S(2m - 2, y))}, and RHS = 1. The first term vanishes if the x2m+1 power contribution vanishes, and
then for this x-power RHS − LHS = 0 if

S(2 (m− 1), y) = 1 + S(m− 2, y)R(m, y) . (53)

Lemma 2: Eqs. (52) and (53) are satisfied for all m ≥ 0 .

Proof:
These two equations are found in [6], written for Chebyshev T and U -polynomials.
Using a proof of the standard bisection will not help here. The proof is done by induction on m on both
equations simultaneously, employing the Cassini-Simson identity from Eq. 24.
For m = 0 the first equation is fulfilled because S(−1, y) = 0, and the second one because S(−2, y) =
−1 and R(0, y) = 2.
Assume that both equations hold for m′ = 1, 2, ..., m. First, Eq. 53 will be proved for m → m + 1.
Multiplying Eq. 52 by y and subtracting Eq. 53 yields, after using recurrence relations,

S(2m, y) = S(m, y)R(m, y) − 1 . (54)

For Eq. 53 one wants to prove S(2m, y) = 1 + S(m−1, y)R(m+1, y), i.e., 0 = 1 + S(m−1, y)R(m+
1, y)− (S(m, y)R(m, y) − 1), i.e., 0 = 2 − S(m, y)R(m, y) + S(m− 1, y)R(m+ 1, y). Replacing R
in terms of S, using S(m − 1, y)S(m + 1, y) = S(m, y)2 − 1 (Cassini-Simson) leads to a cancellation
of S(m, y)2, leaving 0 = 1 − S(m − 1, y)2 + S(m, y)S(m − 2, y), which is again a Cassini-Simson
identity. Thus Eq. 53 is proved.

For Eq. 52 one wants to prove S(2m + 1, y) = S(m, y)R(m + 1, y). By recurrence S(2m + 1, y) =
y S(2m, y) − S(2m − 1, y) which becomes, with the induction assumptions Eq. 54 and Eq. 52 (for m),
S(2m + 1, y) = −y + y S(m, y)R(m, y) − S(m − 1, y)R(m, y). This is by recurrence S(2m + 1, y) =
−y + S(m + 1, y)R(m, y). One wants now to prove S(2m + 1, y) = S(m, y)R(m + 1, y) = −y +
S(m + 1, y)R(m, y). Replacing R in terms of S gives, after cancellation of S(m, y)S(m + 1, y), S(m +
1, y)S(m − 2, y) − S(m, y)S(m − 1, y) = −y. Replacing S(m − 2, y) by y S(m − 1, y) − S(m, y), and
then S(m + 1, y)S(m − 1, y) = −1 + S(m, y)2 (Cassini-Simson) leads to 0 = S(m, y) (y S(m, y) −
S(m − 1, y)) − S(m + 1, y)S(m, y), which holds because of the recurrence relation. �

Consider the R term contributions in the numerator N together with the pre-factor with powers xi

for i ∈ {0, 1 , 2}. The powers are xi+l+m, for m ≥ 2 and l ∈ {0, 1, ..., m − 1 }, but only for e :=
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i + l + m <= 2m − 1, because the powers xm and x2m+1 have just been treated separately. R terms
appear only for the exponents e = 2m − 1, ..., m.
In RHS the general l term contributes, for i = 0, 1, 2, with R̂(l) := −R(m, y)S(l, y) to xm+ l+ i.
Therefore one considers an m rows and three columns array AR with entries AR(l, i) = R̂(l)xm+l+i.
The anti-diagonals of AR have identical powers of x.
In the last row, l = m− 1, the last two entries, and in the row l = m− 2 the last entry are not relevant
because the powers are x2m and x2m+1, already treated.
A special case is AR(0, 0) = R̂(0)xm because here the LHS has entry −R(m, y)xm, and to this power
also the later discussed array AS contributes with three terms S(m, y), −y S(m − 1, y) and S(m − 2, y)
from the second terms of AS(0, 0), the first terms of AS(m − 1, 1) and AS(m − 2, 2), respectively.
Then RHS − LHS vanishes for xm because −R(m, y) + (S(m, y) − y S(m − 1, y) + S(m − 2, y)) −
(−R(m, y)) = 0, by cancellation of R and the recurrence relation of the S polynomials. As announced,
the R term is irrelevant, only the S recurrence enters.
Another case where the length of the anti-diagonal in AR is not 3 is AR(1, 0) = R̂(1) and AR(0, 1) =
R̂(0). This produces for the power xm+1 only −R(m, y)(S(1 , y)−y S(0, y)) = 0, because S(−1, y) = 0.
There will be no contribution from the array AS for this power.
All other anti-diagonals of AR, i.e., those with powers xm+ j, for j ∈ {2, 3, ..., m − 1 }, have length 3,
and their contributions R(m, y) (S(j, y) − y S(j − 1, y) + S(j − 2, y)) vanish because of the recurrence
for the S-polynomials, independently of R.

For the pure S terms of RHS one considers the companion array AS with two term entries AS(l, i) =
S(l, y)xl+i + S(m + l, y)xm+ l+ i.
The anti-diagonals with length 3, i.e., those for powers {xj , xm+ j), for j ∈ {2, 3, ..., m − 1 } give
vanishing contributions to RHS because for both S-polynomial terms their recurrence relation appears.
The first term of the entry AS(0, 0) = S(0, y)x0 + S(m, y)xm is identical with 1 · x0 of LHS, and the
second term has been needed above (among others) in the proof of the vanishing of the contribution to
xm.
The second anti-diagonal A(1, 0) and A(0, 1) contributes to x1 with S(1, y)− y S(0, y) = 0 (S(−1, y) =
0), and to xm+1 with S(m + 1, y) − y S(m, y) which is needed, together with the first term of the last
entry AS(m − 1, 2) = S(m − 1, y)xm+1, to prove the vanishing for the contribution of AS to xm+1.
For the corresponding vanishing of the AR contribution see above. There is no such LHS contribution.

The second term of AS(m− 1, 2) = S(2m − 1, y)x2m+1 has been used in the treatment of the highest
power above.
Finally, the second terms of the two anti-diagonal entries AS(m − 1, 1) and AS(m − 2, 2) contribute
−y S(2m − 1, y) + S(2m − 2, y). They have been treated above together with the AR contribution to
the second highest power above.
All RHS entries of AR and AS have been considered and shown to contribute only to the three powers
x1, xm and x2m giving the LHS, which ends the proof. �

To end this work the results of the alternative bisection formulas Eq. 52 and Eq. 53 are given for the
H01 and H sequences. There derivation is done with the help of eqs. (25) and (16).
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H01(r, s; 2m + 1) = (
√
−s )m+1 H01(r, s; m)R(m+ 1, r/

√
−s ) + (−s)m ,

= (−s)m
(
S(m− 1, r/

√
−s )R(m+ 1, r/

√
−s ) + 1

)
, (55)

H01(r, s; 2m) = (
√
−s )mH01(r, s; m)R(m, r/

√
−s ) ,

= (
√
−s)2m−1 S(m− 1, r/

√
−s )R(m, r/

√
−s ). (56)

H(p, q; r, s; 2m + 1) = (
√
−s )m

{
H01(r, s; m) (

√
−s q R(m + 1, r/

√
−s) + p sR(m, r/

√
−s))

+(
√
−s )m q

}

= (−s)m
{
S(m − 1, r/

√
−s ) (q R(m + 1, r/

√
−s ) −

√
−s pR(m, r/

√
−s))

+q} , (57)

H(p, q; r, s; 2m) = (
√
−s )m

{
R(m, r/

√
−s ) (q H01(r, s; m) + s pH01(r, s; m − 1))

− (
√
−s )m p

}
,

= (−s)m−1
{
R(m, r/

√
−s ) (

√
−s q S(m − 1, r/

√
−s ) + s p S(m − 2, r/

√
−s ))

+ s p} . (58)
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