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Abstract

The first normal ordering problem involves bosonic harmonic oscillator creation and annihilation
operators (Heisenberg algebra). It is related to the problem of finding the finite transformation gen-
erated by Lk−1 := −zk ∂z, k ∈ Z, z ∈ C (conformal algebra generators). It can be formulated in
terms of a subclass of Sheffer-polynomials called Jabotinsky-polynomials. The coefficients of these
polynomials furnish generalized Stirling-number triangles of the second kind, called S2(k; n,m) for
k ∈ Z. Generalized Stirling-numbers of the first kind, S1(k;n,m) are also defined.
The second normal ordering problem appears in thermo-field dynamics for the harmonic Bose oscillator.
Again Sheffer-polynomials appear. They relate to Euler numbers and iterated sums of squares. In a
different approach to this problem one solves the differential-difference equation

fn+1 = f ′n + n2 fn−1 , n >= 1, with certain inputs f0 and f1 = f ′0.
In this case the integer coefficients of the special Sheffer-polynomials which emerge have an interpre-
tation as sum over multinomials for some subset of partitions.

1 Introduction

Two exercises from physics lectures on quantum field theory will be discussed.
Problem 1: Normal ordering of harmonic Bose oscillator operators related to the exponential
exp(c zk ∂z), z ∈ C, k ∈ Z. This will introduce a family of generalized Stirling numbers of both kinds,
called S2(k; n,m) and S1(k; n,m) . The problem is related to the Witt-algebra (conformal Lie-algebra
for C).
Problem 2: Rightsided normal ordering in thermal quantum field theory of the harmonic Bose oscillator.
In both problems Jabotinsky and Sheffer-number triangles, resp. polynomials will show up.

2 Problem 1

The Heisenberg algebra [a,a+] = 1 is considered in the (infinite dimensional) holomorphic representation
[5], [2], [14], [15]:

a .= ∂z =
∂

∂ z
, a+ .= z ∈ C. (1)

These operators act on the space of holomorphic functions C → C (entire functions) endowed with a
scalar product.
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The problem is to solve the following equation for g:

: exp(g(k; c; z) z ∂z) : = exp(c zk ∂z) , with c ∈ C , (2)

and the linear normal ordering symbol : 1 : = 1 and : (z ∂z)p : = zp ∂ p
z for p ∈ N.

This is useful because if g is known, one has, via Taylor’s expansion for holomorphic functions,
exp(c zk ∂z) f(z) = f(z′) = f(z (1 + g(k; c; z))) . (3)

It rephrases the problem of finding the finite conformal transformations on C generated by
Lk−1 := −zk ∂z, with k ∈ Z. These generators obey the conformal Lie algebra

[Lm, Ln] = (m− n) Lm+n , m,n ∈ Z .
Together with the complex conjugated generators, this is the Witt Lie algebra.
Some special cases:

k = 0 : g(0; c; z) = c/z ; z′ = z + c; L−1 generates translations.

k = 1 : g(1; c; z) = exp(c) − 1 ; z′ = exp(c) z; L0 generates scalings (dilations) and rotations.

k = 2 : g(2; c; z) = c z/(1 − c z) ; z′ = z/(1 − c z); L+1 generates special conformal transforma-
tions.

{L−1 , L0 , L+1} generate the globally defined SL(2,C) Möbius transformations.

There are at least 4 different ways to solve for g(k; c; z):

1) To derive from the Lie algebra the Lie group one solves the differential eq.
dz(α)
dα

= c zk(α) with z′ = z(α = 1) and z = z(α = 0), (4)

and finds the solution z′ = (1 + g(k; c; z)) z with

1 + g(k; c; z) =
(
1− (k − 1) c zk−1

)− 1
k−1 . (5)

For all k 6= 0, 1, 2 there appear |k − 1|-th roots defined on Riemann sheets.

2) One may also use a transformation of variables, viz. y := − 1
k−1

1
zk−1 , k 6= 1. This reduces the

problem to a translation in the y-variable e.g. [4] .

3) The physicist’s solution:

Use the multiple commutator formula for exp(B) zl exp(−B) with B = −cLk−1 and [Lk−1, z
l] =

−l zl+k−1.

A resummation of the ensuing series in powers of c (k − 1) zk−1 with coefficients (l/(k − 1))n/n!
leads to the above given result for 1 + g(k; c; z).

4) Direct solution generalizing Stirling numbers of the second kind (the case = 1 is reached as a limit).
This approach has been used in [9].

Case k = 1:

ec z ∂z =
∞∑

n=0

cn

n!
E n

z = 1 +
∞∑

n=1

cn

n!

n∑

m=1

S2(n, m) zm ∂ m
z (6)

= 1 +
∞∑

m=1

( ∞∑
n=m

cn

n!
S2(n,m)

)
zm ∂ m

z = 1 +
∞∑

m=1

G2m(c) zm ∂ m
z . (7)

with E n
z := (z ∂z)n =

∑n
m=1 S2(n,m) zm ∂ m

z , n ∈ N.

2



G2m(c) = 1
m! (G2(c))m with G2(c) = exp(c)− 1 the e.g.f. (exponential generating function) of the

first (m = 1) column

of the S2(n,m) number triangle. For this triangle see [18] nr. A008277.

ec z ∂z = : exp(G2(c) z ∂z) : = : exp[(exp(c)− 1) z ∂z] : , i.e. 1 + g(1; c; z) = exp(c) .

This signals that S2(n,m) is a special instance of a Sheffer triangle, called by D. E. Knuth [8] Jabotinsky
matrix [7].
The row polynomials S2n(x) :=

∑n
m=1 S2(n,m) xm are therefore exponential (also called binomial)

convolution polynomials, satisfying, with S20(x) := 1 ,

S2n(x + y) =
n∑

p=0

(
n

p

)
S2p(x) S2n−p(y) =

n∑

p=0

(
n

p

)
S2p(y) S2n−p(x) . (8)

General k−case: One can write everywhere S2(k; n,m) with k ∈ Z. With

E n
k;z ≡ (zk ∂z)n =

n∑

m=1

S2(k; n,m) zm+(k−1) n ∂ m
z , n ∈ N , (9)

and the triangle convention: S2(k; n,m) = 0 for n < m, and S2(k; n, 0) = δn,0 . The recurrence relation
for each k is:

S2(k;n,m) = ((k-1)(n-1)+m) S2(k;n-1,m) + S2(k;n-1,m-1) . (10)

Number triangles of this type have been investigated by Carlitz [3].
Special cases:

The k = 0 triangle is the lower part of the unit matrix.

The k = 2 triangle was known as (unsigned) Lah number triangle. [18] nr. A008297.

The k = −1 triangle is related to a Bessel triangle. [18] nr. A001497.

The e.g.f.s for the first columns (k 6= 1): (for Jabotinsky triangles this is all what is needed):

G2(k; x) = (k − 1) g2(k;
x

k − 1
) , with g2(k; y) =

(
1 − (1 − (1− k)2 y )

1
1−k

)
/(1− k) . (11)

g2(k; y) is the o.g.f. (ordinary generating function) of the first column of the associated triangles

s2(k; n,m) := (k − 1)n−m m!
n!

S2(k; n,m) . (12)

with recurrence

s2(k; n,m) =
k − 1

n
[(k − 1)(n− 1) + m] s2(k; n− 1,m) +

m

n
s2(k;n− 1,m− 1) , (13)

where s2(k;n,m) = 0, n < m , s2(k; n, 0) = δn,0, s2(k; 1, 1) = 1 .

c2(l; y) := 1−(1−l2 y)
1
l

l y , (14)

which appears here as g2(k; y) = y c2(1− k; y) is, for l 6= 0 the o.g.f. for generalized Catalan-numbers
(l = 2 corresponds to the usual case).
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3 Sheffer group and Jabotinsky subgroup

Before commenting on generalized Stirling numbers of the first kind, S1(k; n,m), an interlude on the
Sheffer group and its Jabotinsky subgroup. This is similar to the case of ordinary convolution polynomials
where the corresponding group has been called in [16] Riordan group with its associated subgroup.
Elements of the Sheffer group are (g, f), with e.g.f.s g(y) := 1 +

∑∞
k=1 gk yk/k! and f(y) = y +∑∞

n=2 fn yn/n! , standing for the infinite dimensional, lower triangular matrix S

S(n,m) :=
[

yn

n!

]
gm(y), with gm(y) := g(y) (f(y))m

m! for n ≥ m ≥ 0, and 0 if n < m . (15)

Multiplication is defined as matrix multiplication S(1) · S(2) = S(3) which produces the law

(g(1), f (1)) · (g(2), f (2)) = (g(3), f (3)) ,with (16)
g(3) = g(1) ( g(2) ◦ f (1) ) and f (3) = f (2) ◦ f (1) (17)

• The unit element is matrix 1∞, corresponding to (1, y).
• The inverse element to (g, f) is (g, f)−1 := (1/(g ◦ f) , f) with the compositional inverse f ≡ f−1

of f .
The Sheffer polynomials [13] sn(x) =

∑n
m=0 S(n,m) xm have e.g.f. g(y) exp(x f(y)) .

• (1, f) are the elements of the Jabotinsky subgroup I: (1, f (1)) · (1, f (2)) = (1, f (2) ◦ f (1)).
(1, f)−1 = (1, f) .

• The {sn(x)}, together with the associated Jabotinsky polynomials {pn(x)} with (1, f) are exponential
convolution polynomials:

sn(x + y) =
n∑

k=0

(
n

k

)
sk(x) pn−k(y) =

n∑

k=0

(
n

k

)
sk(y) pn−k(x) . (18)

• A multinomial M3 expression for Jabotinsky matrix elements is [8]

J(n,m) = n!
∑

~α∈Pa(n,m)

n∏

k=1

fαk
k /(αk! (k!)αk) . (19)

where Pa(n,m) denotes the partitions of n with m parts written in the exponential language (1α1 · · ·nαn)
with αj ∈ N0 and fk := [yk] f(y).
Example: (1, exp(y)− 1) for S2(n,m) and its inverse (1, ln(1 + y)) for S1(n,m) .

S2 · S1 = 1∞ = S1 · S2 .
Also for the general k ∈ Z case: S2(k) · S1(k) = 1∞ = S1(k) · S2(k) .
Neuwirth [11] (also private communication) observed that for k 6= 1 one has S2(k) = kS1 · S2 , as well
as S1(k) = S1 ·kS2 , with kS1(n,m) := (1− k)n−m S1(n,m) , and kS2(n,m) := (1− k)n−m S2(n,m) .
• The e.g.f. for S row sums is rn :=

∑n
m=0 S(n,m) is g(x) exp(f(x)) .

• A recurrence relation is given by sn(x) = [x + (ln(g(f̄(t))))′ /f̄ ′(t)]
∣∣
tk=dk

x
sn−1(x) , n ≥ 1, s0(x) = 1 .

See [12] p.50.
• Orthogonal polynomial systems of the Sheffer type have been classified by Meixner [10].
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4 Problem 2

The second problem involves rightsided normal ordering in thermal quantum field theory for harmonic
Bose oscillator operators [19]. One wants to prove the following identity.

exp(θ (A+ − A)) | 0) = 1
cosh θ exp(tanh(θ)A+) | 0) . (20)

This is the thermo-vacuum |0;β) with the inv. temperature β = 1/(k T ), and tanh(θ) = exp(−β ~ω/2)
where ω the frequency of the oscillator. The operators A+ and A act on a direct product space according
to

A+ := a+ ⊗ ã+ , A := a⊗ ã , | 0) := | 0 > ⊗| 0̃ > . (21)

The tilde-system ã, ã+ with | 0̃ > is a twin version of the harmonic Bose oscillator. One has a Lie algebra
su(1, 1) with J− := A , J+ := A+ = (J−)+, J3 := (11 + N )/2 = (J3)+.

[A , A+] = 11 + N , with N := N⊗ 1̃ + 1⊗ Ñ , where N := a+ a , Ñ := ã+ ã (22)
[N , A ] = −2A , [N , A+ ] = +2A+ , 11 := 1⊗ 1̃ . (23)

A holomorphic representation is, cf. [4] eq. (I.3.43)

A+ .= (1/2) ∂2
z , A .= (1/2) z2 , (11 + N )/2 .= −(1/2) (z ∂z + 1/2) . (24)

Compute the above given l.h.s. of the thermo-vacuum with N | 0) = 0 and A | 0) = 0, keep 11 |0) and
A+ | 0) . Rightsided normal ordering means to write for every monomial all A and N to the righthand
side.
Polynomial functions of A and A+ are first rewritten, using the commutation relation, in a such a form
that all A+’s are moved to the left of the A : O(A,A+) = U(O). This expression U(O) is then
decomposed according to U(O) = Nr(O ) + R(O) with Nr(O )| 0) = 0. Here Nr is the rightsided
normal ordering symbol and R stands for the remainder.
Example: U (

(A+ − A)2
)

= A+2 − A+ A − (A+ A + 11 + N ) + A2 , i.e. Nr( (A+ − A)2 ) =
−2A+ A + A2 − N and R( (A+ − A)2 ) = A+2 − 11 .
The interest is in R(O) . If x is used instead of A+, and 1 instead of 11 then R((A+ − A)n) becomes
a polynomials Rn(x) . E.g. R2(x) = x2 − 1 . One finds an integer coefficient triangle for R(n,m)
:= [xm]Rn(x) . See [18] nr. A060081.

Rn(x) =
∑bn/2c

k=0 (−1)k a(n− (2 k − 1), k) xn−2 k , where a(n, k) =
∑n

j=1 a(j + 1, k − 1) j2 , with input
a(n, 0) = 1 . is a rectangular array satisfying the following recurrence.

a(n, k) = a(n− 1, k) + n2 a(n + 1, k − 1) , (25)

with input a(n,−1) = 0 , a(0, k) = δ0,k .
Example: R6(x) = x6 − a(5, 1)x4 + a(3, 2)x2 − a(1, 3) 1 = x6 − 55 x4 + 331 x2 − 61 .
The Rn(x) polynomials are Sheffer for (1/coshy, tanhy), i.e.

∞∑

n=0

Rn(x) yn/n! = (1/cosh y) exp(x tanh y) . (26)

For x→ A+ , y → θ this then proves the thermo-vacuum identity.
Euler numbers Ēn (signed, aerated) appear in the first (and second) column of the a(n,m) array. In
symbolic notation (exponents instead of indices) they are defined by

(Ē + 1)k + (Ē − 1)k = 0, k ∈ N , Ē0 = 1. (27)
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To the author’s knowledge one obtains here a new representation for Euler numbers En = (−1)n Ē2 n ,
n ∈ N0 and their generalizations, via iterated sums of squares:

a(n,m) =
∑n

jm=1 j2
m

∑jm+1
jm−1=1 j2

m−1 · · ·
∑j2 +1

j1=1 j2
1 , a(n, 0) := 1, a(0,m) = δm,0 . (28)

The usual Euler numbers are Em+1 = a(2,m) and the last sum extends only up to n = 2.
Note: The trigonometric version Sheffer (1/cos y, tany) is used for the Moyal star product for the
harmonic Bose oscillator [17]. f = f(ā, a), g = g(ā, a) ; f ∗ g := f exp(i ~/2

←→
P a,ā ) g with←→

P a,ā := −i (
←−
∂ a
−→
∂ ā − ←−∂ ā

−→
∂ a ) , the Poisson bidifferential. [a, ā]∗ := a ∗ ā − ā ∗ a = 1 .

U(t) := exp∗(−iH t/~) with H = ω ā a , with H∗n := H ∗H ∗ ... ∗H︸ ︷︷ ︸
n times

leads to

U(t) =
1

cosh y
exp(x tanh y) =

1
cos(ω t/2)

exp(−i (2 ā a/~) tan(ω t/2) ) , (29)

where x ≡ 2 ā a/~ and y ≡ −i ω t/2 . This results from

x∗n = Rn(x) =
∑n

m=0 R(n,m) xm . (30)

5 Alternative Approach to Problem 2

Define with Umezawa et al. [19] fn(θ) := (0 |An exp(−θ (A+ − A)) | 0) ≡ (0 |An U(−θ) | 0) .
Consider

f ′0(θ) = −(0 | (A+ − A)U(−θ)| 0) = −(0 |U(−θ)(A+ − A)| 0)
and derive, using Bogoliubov transformations like

U(θ)aU(−θ) = cosh θ a − sinh θ ã+, etc.
the differential-difference eq.

fn+1(θ) = f ′n(θ) + n2 fn−1(θ) , (31)

with inputs f0(θ) = 1/cosh θ and f1(θ) = f ′0(θ) .
For general input f0(θ) one uses
fn(θ) =

∑n
m=0 f(n,m) dm

dθm f0(θ) = sn( d
dθ ) f0(θ), with

sn(θ) = θ sn−1(θ) + (n− 1)2 sn−2(θ) , s0(θ) = 1 , s−1(θ) = 0 . (32)

Thus {sn(θ → x)} become Sheffer polynomials for ( 1√
1−y2

,Artanhy).

The f(n,m) triangle is the inverse of the R(n,m) triangle. See [18], nr. A060524 (V. Jovovic)
There is the following combinatorial interpretation: f(n,m) =

∑
~α∈Pao(n,m) M2(~α) .

Pao(n,m) stands for partitions of n with m odd parts (and possibly even ones). Again, partitions are
written in the exponential form with exponents ~α := (α1, ..., αn).
M2 are the multinomial numbers [1], pp. 823, 831: n!/

∏n
j=1 jaj aj ! .

Example: 5 = f(3, 1) = M2([3]) + M2([1, 2]) = 2 + 3 .
This is a reformulation of exercise 3.3.13. on p.189 of [6]
For the considered physical problem the input is f0(θ) = 1/cosh θ . This leads to

fn(θ) = n!(1/cosh θ) (−tanh θ)n , (33)

which coincides with the matrix elements (0 |An U(−θ) | 0) with U(−θ)| 0) = (1/cosh θ) exp(−tanh(θ)A+) | 0)
due to (0 |An (A+)m | 0) = (n!)2 δn,m .
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6 Conclusion

H Two simple harmonic quantum oscillator problems feature some nice elements of the Sheffer group.

H Problem 1: Sometimes it is rewarding not to take the diretissima.

H Problem 2: Sometimes it is rewarding to take different routes to the same summit.
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TAB. 1: R(n,m) Sheffer triangle [18], nr. A060081

n/m 0 1 2 3 4 5 6 7 8 9 10

0 1
1 0 1
2 -1 0 1
3 0 -5 0 1
4 5 0 -14 0 1
5 0 61 0 -30 0 1
6 -61 0 331 0 -55 0 1
7 0 -1385 0 1211 0 -91 0 1
8 1385 0 -12284 0 3486 0 -140 0 1
9 0 50521 0 -68060 0 8526 0 -204 0 1
10 -50521 0 663061 0 -281210 0 18522 0 -285 0 1

...

TAB. 2: a(n,m) array (as triangle [18], nr. A060074)

n/m 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 1 1 5 61 1385 50521 2702765 199360981
2 1 5 61 1385 50521 2702765 199360981 19391512145
3 1 14 331 12284 663061 49164554 4798037791 596372040824
4 1 30 1211 68060 5162421 510964090 64108947631 9954077496120
5 1 55 3486 281210 28862471 3706931865 584856590956 111432850130020
6 1 91 8526 948002 127838711 20829905733 4059150905356 935210483855284
7 1 140 18522 2749340 475638163 96508175400 22882712047924 6296554692590120
8 1 204 36762 7097948 1544454483 384154309032 109415187933364 35575114290521256

...
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TAB. 3: associated Sheffer triangle (1,tanh y), [18], nr. A111593

n/m 0 1 2 3 4 5 6 7 8 9 10

0 1
1 0 1
2 0 0 1
3 0 -2 0 1
4 0 0 -8 0 1
5 0 16 0 -20 0 1
6 0 0 136 0 -40 0 1
7 0 -272 0 616 0 -70 0 1
8 0 0 -3968 0 2016 0 -112 0 1
9 0 7936 0 -28160 0 5376 0 -168 0 1
10 0 0 176896 0 -135680 0 12432 0 -240 0 1

...

TAB. 4: f(n,m) Sheffer triangle [18], nr. A060524

n/m 0 1 2 3 4 5 6 7 8 9 10

0 1
1 0 1
2 1 0 1
3 0 5 0 1
4 9 0 14 0 1
5 0 89 0 30 0 1
6 225 0 439 0 55 0 1
7 0 3429 0 1519 0 91 0 1
8 11025 0 24940 0 4214 0 140 0 1
9 0 230481 0 122156 0 10038 0 204 0 1
10 893025 0 2250621 0 463490 0 21378 0 285 0 1

...
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TAB. 5: associated Sheffer triangle (1,Artanh y) [18], nr. A111594

n/m 0 1 2 3 4 5 6 7 8 9 10

0 1
1 0 1
2 0 0 1
3 0 2 0 1
4 0 0 8 0 1
5 0 24 0 20 0 1
6 0 0 184 0 40 0 1
7 0 720 0 784 0 70 0 1
8 0 0 8448 0 2464 0 112 0 1
9 0 40320 0 52352 0 6384 0 168 0 1
10 0 0 648576 0 229760 0 14448 0 240 0 1

...
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