Two Normal Ordering Problems and Certain Sheffer Polynomials

Wolfdieter Lang ${ }^{1}$
Institut für Theoretische Physik
Universität Karlsruhe
D-76128 Karlsruhe, Germany

Abstract

The first normal ordering problem involves bosonic harmonic oscillator creation and annihilation operators (Heisenberg algebra). It is related to the problem of finding the finite transformation generated by $L_{k-1}:=-z^{k} \partial_{z}, k \in \mathbb{Z}, z \in \mathbb{C}$ (conformal algebra generators). It can be formulated in terms of a subclass of Sheffer-polynomials called Jabotinsky-polynomials. The coefficients of these polynomials furnish generalized Stirling-number triangles of the second kind, called $S 2(k ; n, m)$ for $k \in \mathbb{Z}$. Generalized Stirling-numbers of the first kind, $S 1(k ; n, m)$ are also defined. The second normal ordering problem appears in thermo-field dynamics for the harmonic Bose oscillator. Again Sheffer-polynomials appear. They relate to Euler numbers and iterated sums of squares. In a different approach to this problem one solves the differential-difference equation

$$
f_{n+1}=f_{n}^{\prime}+n^{2} f_{n-1}, n>=1, \text { with certain inputs } f_{0} \text { and } f_{1}=f_{0}^{\prime} .
$$

In this case the integer coefficients of the special Sheffer-polynomials which emerge have an interpretation as sum over multinomials for some subset of partitions.

1 Introduction

Two exercises from physics lectures on quantum field theory will be discussed.
Problem 1: Normal ordering of harmonic Bose oscillator operators related to the exponential $\exp \left(c z^{k} \partial_{z}\right), z \in \mathbb{C}, k \in \mathbb{Z}$. This will introduce a family of generalized Stirling numbers of both kinds, called $S 2(k ; n, m)$ and $S 1(k ; n, m)$. The problem is related to the Witt-algebra (conformal Lie-algebra for \mathbb{C}).
Problem 2: Rightsided normal ordering in thermal quantum field theory of the harmonic Bose oscillator. In both problems Jabotinsky and Sheffer-number triangles, resp. polynomials will show up.

2 Problem 1

The Heisenberg algebra $\left[\mathbf{a}, \mathbf{a}^{+}\right]=\mathbf{1}$ is considered in the (infinite dimensional) holomorphic representation [5], [2], [14], [15]:

$$
\begin{equation*}
\mathbf{a} \doteq \partial_{z}=\frac{\partial}{\partial z}, \quad \mathbf{a}^{+} \doteq z \in \mathbb{C} \tag{1}
\end{equation*}
$$

These operators act on the space of holomorphic functions $\mathbb{C} \rightarrow \mathbb{C}$ (entire functions) endowed with a scalar product.

[^0]The problem is to solve the following equation for g :

$$
\begin{equation*}
: \exp \left(g(k ; c ; z) z \partial_{z}\right):=\exp \left(c z^{k} \partial_{z}\right), \text { with } c \in \mathbb{C}, \tag{2}
\end{equation*}
$$

and the linear normal ordering symbol $: \mathbf{1}:=\mathbf{1}$ and $:\left(z \partial_{z}\right)^{p}:=z^{p} \partial_{z}^{p}$ for $p \in \mathbb{N}$.
This is useful because if g is known, one has, via Taylor's expansion for holomorphic functions,

$$
\begin{equation*}
\exp \left(c z^{k} \partial_{z}\right) f(z)=f\left(z^{\prime}\right)=f(z(1+g(k ; c ; z))) \tag{3}
\end{equation*}
$$

It rephrases the problem of finding the finite conformal transformations on \mathbb{C} generated by $L_{k-1}:=-z^{k} \partial_{z}$, with $k \in \mathbb{Z}$. These generators obey the conformal Lie algebra

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}, m, n \in \mathbb{Z} .
$$

Together with the complex conjugated generators, this is the Witt Lie algebra.
Some special cases:
$k=0: g(0 ; c ; z)=c / z ; z^{\prime}=z+c ; L_{-1}$ generates translations.
$k=1: g(1 ; c ; z)=\exp (c)-1 ; z^{\prime}=\exp (c) z ; L_{0}$ generates scalings (dilations) and rotations.
$k=2: g(2 ; c ; z)=c z /(1-c z) ; z^{\prime}=z /(1-c z) ; L_{+1}$ generates special conformal transformations.
$\left\{L_{-1}, L_{0}, L_{+1}\right\}$ generate the globally defined $S L(2, \mathbb{C})$ Möbius transformations.
There are at least 4 different ways to solve for $g(k ; c ; z)$:

1) To derive from the Lie algebra the Lie group one solves the differential eq.

$$
\begin{equation*}
\frac{d z(\alpha)}{d \alpha}=c z^{k}(\alpha) \text { with } z^{\prime}=z(\alpha=1) \text { and } z=z(\alpha=0) \tag{4}
\end{equation*}
$$

and finds the solution $z^{\prime}=(1+g(k ; c ; z)) z$ with

$$
\begin{equation*}
1+g(k ; c ; z)=\left(1-(k-1) c z^{k-1}\right)^{-\frac{1}{k-1}} . \tag{5}
\end{equation*}
$$

For all $k \neq 0,1,2$ there appear $|k-1|$-th roots defined on Riemann sheets.
2) One may also use a transformation of variables, viz. $y:=-\frac{1}{k-1} \frac{1}{z^{k-1}}, k \neq 1$. This reduces the problem to a translation in the y-variable e.g. [4] .
3) The physicist's solution:

Use the multiple commutator formula for $\exp (\mathbf{B}) z^{l} \exp (-\mathbf{B})$ with $\mathbf{B}=-c L_{k-1}$ and $\left[L_{k-1}, z^{l}\right]=$ $-l z^{l+k-1}$.
A resummation of the ensuing series in powers of $c(k-1) z^{k-1}$ with coefficients $(l /(k-1))^{\bar{n}} / n$! leads to the above given result for $1+g(k ; c ; z)$.
4) Direct solution generalizing Stirling numbers of the second kind (the case $=1$ is reached as a limit). This approach has been used in [9].
Case $k=1$:

$$
\begin{align*}
e^{c z \partial_{z}} & =\sum_{n=0}^{\infty} \frac{c^{n}}{n!} E_{z}{ }^{n}=1+\sum_{n=1}^{\infty} \frac{c^{n}}{n!} \sum_{m=1}^{n} S 2(n, m) z^{m} \partial_{z}{ }^{m} \tag{6}\\
& =1+\sum_{m=1}^{\infty}\left(\sum_{n=m}^{\infty} \frac{c^{n}}{n!} S 2(n, m)\right) z^{m} \partial_{z}{ }^{m}=1+\sum_{m=1}^{\infty} G 2_{m}(c) z^{m} \partial_{z}{ }^{m} \tag{7}
\end{align*}
$$

with $E_{z}{ }^{n}:=\left(z \partial_{z}\right)^{n}=\sum_{m=1}^{n} S 2(n, m) z^{m} \partial_{z}{ }^{m}, n \in \mathbf{N}$.
$G 2_{m}(c)=\frac{1}{m!}(G 2(c))^{m}$ with $G 2(c)=\exp (c)-1$ the e.g.f. (exponential generating function) of the first $(m=1)$ column
of the $S 2(n, m)$ number triangle. For this triangle see [18] nr. A008277.

$$
e^{c z \partial_{z}}=: \exp \left(G 2(c) z \partial_{z}\right):=: \exp \left[(\exp (c)-1) z \partial_{z}\right]:, \text { i.e. } 1+g(1 ; c ; z)=\exp (c) .
$$

This signals that $S 2(n, m)$ is a special instance of a Sheffer triangle, called by D. E. Knuth [8] Jabotinsky matrix [7].
The row polynomials $S 2_{n}(x):=\sum_{m=1}^{n} S 2(n, m) x^{m}$ are therefore exponential (also called binomial) convolution polynomials, satisfying, with $S 2_{0}(x):=1$,

$$
\begin{equation*}
S 2_{n}(x+y)=\sum_{p=0}^{n}\binom{n}{p} S 2_{p}(x) S 2_{n-p}(y)=\sum_{p=0}^{n}\binom{n}{p} S 2_{p}(y) S 2_{n-p}(x) . \tag{8}
\end{equation*}
$$

General k-case: One can write everywhere $S 2(k ; n, m)$ with $k \in \mathbb{Z}$. With

$$
\begin{equation*}
E_{k ; z}^{n} \equiv\left(z^{k} \partial_{z}\right)^{n}=\sum_{m=1}^{n} S 2(k ; n, m) z^{m+(k-1) n} \partial_{z}^{m} \quad, \quad n \in \mathbb{N} \tag{9}
\end{equation*}
$$

and the triangle convention: $S 2(k ; n, m)=0$ for $n<m$, and $S 2(k ; n, 0)=\delta_{n, 0}$. The recurrence relation for each k is:

$$
\begin{equation*}
\mathrm{S} 2(\mathrm{k} ; \mathrm{n}, \mathrm{~m})=((\mathrm{k}-1)(\mathrm{n}-1)+\mathrm{m}) \mathrm{S} 2(\mathrm{k} ; \mathrm{n}-1, \mathrm{~m})+\mathrm{S} 2(\mathrm{k} ; \mathrm{n}-1, \mathrm{~m}-1) . \tag{10}
\end{equation*}
$$

Number triangles of this type have been investigated by Carlitz [3].
Special cases:
The $k=0$ triangle is the lower part of the unit matrix.
The $k=2$ triangle was known as (unsigned) Lah number triangle. [18] nr. A008297.
The $k=-1$ triangle is related to a Bessel triangle. [18] nr. A001497.
The e.g.f.s for the first columns $(k \neq 1):($ for Jabotinsky triangles this is all what is needed):

$$
\begin{equation*}
G 2(k ; x)=(k-1) g 2\left(k ; \frac{x}{k-1}\right), \text { with } g 2(k ; y)=\left(1-\left(1-(1-k)^{2} y\right)^{\frac{1}{1-k}}\right) /(1-k) \tag{11}
\end{equation*}
$$

$g 2(k ; y)$ is the o.g.f. (ordinary generating function) of the first column of the associated triangles

$$
\begin{equation*}
s 2(k ; n, m):=(k-1)^{n-m} \frac{m!}{n!} S 2(k ; n, m) \tag{12}
\end{equation*}
$$

with recurrence

$$
\begin{equation*}
s 2(k ; n, m)=\frac{k-1}{n}[(k-1)(n-1)+m] s 2(k ; n-1, m)+\frac{m}{n} s 2(k ; n-1, m-1) \tag{13}
\end{equation*}
$$

where $s 2(k ; n, m)=0, n<m, s 2(k ; n, 0)=\delta_{n, 0}, s 2(k ; 1,1)=1$.

$$
\begin{equation*}
c 2(l ; y):=\frac{1-\left(1-l^{2} y\right)^{\frac{1}{l}}}{l y} \tag{14}
\end{equation*}
$$

which appears here as $g 2(k ; y)=y c 2(1-k ; y)$ is, for $l \neq 0$ the o.g.f. for generalized Catalan-numbers ($l=2$ corresponds to the usual case).

3 Sheffer group and Jabotinsky subgroup

Before commenting on generalized Stirling numbers of the first kind, $S 1(k ; n, m)$, an interlude on the Sheffer group and its Jabotinsky subgroup. This is similar to the case of ordinary convolution polynomials where the corresponding group has been called in [16] Riordan group with its associated subgroup.
Elements of the Sheffer group are (g, f), with e.g.f.s $g(y):=1+\sum_{k=1}^{\infty} g_{k} y^{k} / k$! and $f(y)=y+$ $\sum_{n=2}^{\infty} f_{n} y^{n} / n!$, standing for the infinite dimensional, lower triangular matrix \mathbf{S}

$$
\begin{equation*}
S(n, m):=\left[\frac{y^{n}}{n!}\right] g_{m}(y), \text { with } g_{m}(y):=g(y) \frac{(f(y))^{m}}{m!} \text { for } n \geq m \geq 0, \text { and } 0 \text { if } n<m \tag{15}
\end{equation*}
$$

Multiplication is defined as matrix multiplication $S^{(1)} \cdot S^{(2)}=S^{(3)}$ which produces the law

$$
\begin{align*}
& \left(g^{(1)}, f^{(1)}\right) \cdot\left(g^{(2)}, f^{(2)}\right)=\left(g^{(3)}, f^{(3)}\right), \text { with } \tag{16}\\
& g^{(3)}=g^{(1)}\left(g^{(2)} \circ f^{(1)}\right) \text { and } f^{(3)}=f^{(2)} \circ f^{(1)} \tag{17}
\end{align*}
$$

- The unit element is matrix $\mathbf{1}_{\infty}$, corresponding to $(1, y)$.
- The inverse element to (g, f) is $(g, f)^{-1}:=(1 /(g \circ \bar{f}), \bar{f})$ with the compositional inverse $\bar{f} \equiv f^{-1}$ of f.
The Sheffer polynomials [13] $s_{n}(x)=\sum_{m=0}^{n} S(n, m) x^{m}$ have e.g.f. $\mathrm{g}(\mathrm{y}) \exp (\mathrm{xf}(\mathrm{y}))$.
- $(1, f)$ are the elements of the Jabotinsky subgroup $\mathcal{I}:\left(1, f^{(1)}\right) \cdot\left(1, f^{(2)}\right)=\left(1, f^{(2)} \circ f^{(1)}\right)$.
$(1, f)^{-1}=(1, \bar{f})$.
- The $\left\{s_{n}(x)\right\}$, together with the associated Jabotinsky polynomials $\left\{p_{n}(x)\right\}$ with $(1, f)$ are exponential convolution polynomials:

$$
\begin{equation*}
s_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} s_{k}(x) p_{n-k}(y)=\sum_{k=0}^{n}\binom{n}{k} s_{k}(y) p_{n-k}(x) \tag{18}
\end{equation*}
$$

- A multinomial M3 expression for Jabotinsky matrix elements is [8]

$$
\begin{equation*}
J(n, m)=n!\sum_{\vec{\alpha} \in P a(n, m)} \prod_{k=1}^{n} f_{k}^{\alpha_{k}} /\left(\alpha_{k}!(k!)^{\alpha_{k}}\right) . \tag{19}
\end{equation*}
$$

where $\operatorname{Pa}(n, m)$ denotes the partitions of n with m parts written in the exponential language $\left(1^{\alpha_{1}} \cdots n^{\alpha_{n}}\right)$ with $\alpha_{j} \in \mathbb{N}_{0}$ and $f_{k}:=\left[y^{k}\right] f(y)$.
Example: $(1, \exp (y)-1)$ for $S 2(n, m)$ and its inverse $(1, \ln (1+y))$ for $S 1(n, m)$.

$$
\mathbf{S} 2 \cdot \mathbf{S} 1=\mathbf{1}_{\infty}=\mathbf{S} 1 \cdot \mathbf{S} 2
$$

Also for the general $k \in \mathbb{Z}$ case: $\mathbf{S 2}(k) \cdot \mathbf{S 1}(k)=\mathbf{1}_{\infty}=\mathbf{S} 1(k) \cdot \mathbf{S} 2(k)$.
Neuwirth [11] (also private communication) observed that for $k \neq 1$ one has $\mathbf{S 2}(k)=\mathbf{k S 1} \cdot \mathbf{S 2}$, as well as $\mathbf{S 1}(k)=\mathbf{S} 1 \cdot \mathbf{k S} \mathbf{2}$, with $k S 1(n, m):=(1-k)^{n-m} S 1(n, m)$, and $k S 2(n, m):=(1-k)^{n-m} S 2(n, m)$.

- The e.g.f. for \mathbf{S} row sums is $r_{n}:=\sum_{m=0}^{n} S(n, m)$ is $g(x) \exp (f(x))$.
- A recurrence relation is given by $s_{n}(x)=\left.\left[x+(\ln (g(\bar{f}(t))))^{\prime} / \bar{f}^{\prime}(t)\right]\right|_{t^{k}=d_{x}^{k}} s_{n-1}(x), n \geq 1, s_{0}(x)=1$. See [12] p. 50.
- Orthogonal polynomial systems of the Sheffer type have been classified by Meixner [10].

4 Problem 2

The second problem involves rightsided normal ordering in thermal quantum field theory for harmonic Bose oscillator operators [19]. One wants to prove the following identity.

$$
\begin{equation*}
\left.\left.\exp \left(\theta\left(\mathbf{A}^{+}-\mathbf{A}\right)\right) \mid 0\right) \left.=\frac{1}{\cosh \theta} \exp \left(\tanh (\theta) \mathbf{A}^{+}\right) \right\rvert\, 0\right) . \tag{20}
\end{equation*}
$$

This is the thermo-vacuum $\mid 0 ; \beta)$ with the inv. temperature $\beta=1 /(k T)$, and $\tanh (\theta)=\exp (-\beta \hbar \omega / 2)$ where ω the frequency of the oscillator. The operators \mathbf{A}^{+}and \mathbf{A} act on a direct product space according to

$$
\begin{equation*}
\left.\mathbf{A}^{+}:=\mathbf{a}^{+} \otimes \tilde{\mathbf{a}}^{+}, \quad \mathbf{A}:=\mathbf{a} \otimes \tilde{\mathbf{a}}, \mid 0\right):=|0>\otimes| \tilde{0}> \tag{21}
\end{equation*}
$$

The tilde-system $\tilde{\mathbf{a}}, \tilde{\mathbf{a}}^{+}$with $\mid \tilde{0}>$ is a twin version of the harmonic Bose oscillator. One has a Lie algebra $s u(1,1)$ with $\mathbf{J}_{-}:=\mathbf{A}, \mathbf{J}_{+}:=\mathbf{A}^{+}=\left(\mathbf{J}_{-}\right)^{+}, \mathbf{J}_{3}:=(\mathbb{1}+\mathcal{N}) / 2=\left(\mathbf{J}_{\mathbf{3}}\right)^{+}$.

$$
\begin{align*}
& {\left[\mathbf{A}, \mathbf{A}^{+}\right]=\mathbb{1}+\mathcal{N}, \text { with } \mathcal{N}:=\mathbf{N} \otimes \tilde{\mathbf{1}}+\mathbf{1} \otimes \tilde{\mathbf{N}}, \text { where } \mathbf{N}:=\mathbf{a}^{+} \mathbf{a}, \tilde{\mathbf{N}}:=\tilde{\mathbf{a}}^{+} \tilde{\mathbf{a}}} \tag{22}\\
& {[\mathcal{N}, \mathbf{A}]=-2 \mathbf{A}, \quad\left[\mathcal{N}, \mathbf{A}^{+}\right]=+2 \mathbf{A}^{+}, \quad \mathbb{1}:=\mathbf{1} \otimes \tilde{\mathbf{1}}} \tag{23}
\end{align*}
$$

A holomorphic representation is, cf. [4] eq. (I.3.43)

$$
\begin{equation*}
\mathbf{A}^{+} \doteq(1 / 2) \partial_{z}^{2}, \mathbf{A} \doteq(1 / 2) z^{2},(\mathbb{1}+\mathcal{N}) / 2 \doteq-(1 / 2)\left(z \partial_{z}+1 / 2\right) \tag{24}
\end{equation*}
$$

Compute the above given l.h.s. of the thermo-vacuum with $\mathcal{N} \mid 0)=0$ and $\mathbf{A} \mid 0)=0$, keep $\mathbb{1} \mid \mathbf{0}$) and $\left.\mathbf{A}^{+} \mid 0\right)$. Rightsided normal ordering means to write for every monomial all \mathbf{A} and \mathcal{N} to the righthand side.
Polynomial functions of \mathbf{A} and \mathbf{A}^{+}are first rewritten, using the commutation relation, in a such a form that all \mathbf{A}^{+}'s are moved to the left of the $\mathbf{A}: \mathcal{O}\left(\mathbf{A}, \mathbf{A}^{+}\right)=\mathcal{U}(\mathcal{O})$. This expression $\mathcal{U}(\mathcal{O})$ is then decomposed according to $\mathcal{U}(\mathcal{O})=N r(\mathcal{O})+R(\mathcal{O})$ with $N r(\mathcal{O}) \mid 0)=0$. Here $N r$ is the rightsided normal ordering symbol and R stands for the remainder.
Example: $\mathcal{U}\left(\left(\mathbf{A}^{+}-\mathbf{A}\right)^{2}\right)=\mathbf{A}^{+2}-\mathbf{A}^{+} \mathbf{A}-\left(\mathbf{A}^{+} \mathbf{A}+\mathbb{1}+\mathcal{N}\right)+\mathbf{A}^{\mathbf{2}}$, i.e. $\operatorname{Nr}\left(\left(\mathbf{A}^{+}-\mathbf{A}\right)^{2}\right)=$ $-2 \mathbf{A}^{+} \mathbf{A}+\mathbf{A}^{2}-\mathcal{N}$ and $R\left(\left(\mathbf{A}^{+}-\mathbf{A}\right)^{2}\right)=\mathbf{A}^{+2}-\mathbb{1}$.
The interest is in $R(\mathcal{O})$. If x is used instead of \mathbf{A}^{+}, and 1 instead of $\mathbb{1}$ then $R\left(\left(\mathbf{A}^{+}-\mathbf{A}\right)^{n}\right)$ becomes a polynomials $R_{n}(x)$. E.g. $\quad R_{2}(x)=x^{2}-1$. One finds an integer coefficient triangle for $R(n, m)$ $:=\left[x^{m}\right] R_{n}(x)$. See [18] nr. A060081.
$R_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} a(n-(2 k-1), k) x^{n-2 k}$, where $a(n, k)=\sum_{j=1}^{n} a(j+1, k-1) j^{2}$, with input $a(n, 0)=1$. is a rectangular array satisfying the following recurrence.

$$
\begin{equation*}
a(n, k)=a(n-1, k)+n^{2} a(n+1, k-1) \tag{25}
\end{equation*}
$$

with input $a(n,-1)=0, a(0, k)=\delta_{0, k}$.
Example: $R_{6}(x)=x^{6}-a(5,1) x^{4}+a(3,2) x^{2}-a(1,3) 1=x^{6}-55 x^{4}+331 x^{2}-61$.
The $R_{n}(x)$ polynomials are Sheffer for $(\mathbf{1} / \cosh \mathbf{y}, \tanh \mathbf{y})$, i.e.

$$
\begin{equation*}
\sum_{n=0}^{\infty} R_{n}(x) y^{n} / n!=(1 / \cosh y) \exp (x \tanh y) \tag{26}
\end{equation*}
$$

For $x \rightarrow \mathbf{A}^{+}, y \rightarrow \theta$ this then proves the thermo-vacuum identity.
Euler numbers \bar{E}_{n} (signed, aerated) appear in the first (and second) column of the $a(n, m)$ array. In symbolic notation (exponents instead of indices) they are defined by

$$
\begin{equation*}
(\bar{E}+1)^{k}+(\bar{E}-1)^{k}=0, k \in \mathbb{N}, \bar{E}_{0}=1 \tag{27}
\end{equation*}
$$

To the author's knowledge one obtains here a new representation for Euler numbers $E_{n}=(-1)^{n} \bar{E}_{2 n}$, $n \in \mathbb{N}_{0}$ and their generalizations, via iterated sums of squares:

$$
\begin{equation*}
a(n, m)=\sum_{j_{m}=1}^{n} j_{m}^{2} \sum_{j_{m-1}=1}^{j_{m}+1} j_{m-1}^{2} \cdots \sum_{j_{1}=1}^{j_{2}+1} j_{1}^{2}, a(n, 0):=1, a(0, m)=\delta_{m, 0} . \tag{28}
\end{equation*}
$$

The usual Euler numbers are $E_{m+1}=a(2, m)$ and the last sum extends only up to $n=2$.
Note: The trigonometric version Sheffer $(1 / \cos y, \tan y)$ is used for the Moyal star product for the harmonic Bose oscillator [17]. $f=f(\bar{a}, a), g=g(\bar{a}, a) ; f * g:=f \exp \left(i \hbar / 2 \overleftrightarrow{P}_{a, \bar{a}}\right) g$ with $\overleftrightarrow{P}_{a, \bar{a}}:=-i\left(\overleftarrow{\partial}_{a} \vec{\partial}_{\bar{a}}-\overleftarrow{\partial}_{\bar{a}} \vec{\partial}_{a}\right)$, the Poisson bidifferential. $[a, \bar{a}]_{*}:=a * \bar{a}-\bar{a} * a=1$ $U(t):=\exp _{*}(-i H t / \hbar)$ with $H=\omega \bar{a} a$, with $H^{* n}:=\underbrace{H * H * \ldots * H}_{n \text { times }}$ leads to

$$
\begin{equation*}
U(t)=\frac{1}{\cosh y} \exp (x \tanh y)=\frac{1}{\cos (\omega t / 2)} \exp (-i(2 \bar{a} a / \hbar) \tan (\omega t / 2)) \tag{29}
\end{equation*}
$$

where $x \equiv 2 \bar{a} a / \hbar$ and $y \equiv-i \omega t / 2$. This results from

$$
\begin{equation*}
x^{* n}=R_{n}(x)=\sum_{m=0}^{n} R(n, m) x^{m} \text {. } \tag{30}
\end{equation*}
$$

5 Alternative Approach to Problem 2

Define with Umezawa et al. [19] $f_{n}(\theta):=\left(0\left|\mathbf{A}^{n} \exp \left(-\theta\left(\mathbf{A}^{+}-\mathbf{A}\right)\right)\right| 0\right) \equiv\left(0\left|\mathbf{A}^{n} \mathbf{U}(-\theta)\right| 0\right)$. Consider

$$
f_{0}^{\prime}(\theta)=-\left(0\left|\left(\mathbf{A}^{+}-\mathbf{A}\right) \mathbf{U}(-\theta)\right| 0\right)=-\left(0\left|\mathbf{U}(-\theta)\left(\mathbf{A}^{+}-\mathbf{A}\right)\right| 0\right)
$$

and derive, using Bogoliubov transformations like

$$
\mathbf{U}(\theta) \mathbf{a} \mathbf{U}(-\theta)=\cosh \theta \mathbf{a}-\sinh \theta \tilde{\mathbf{a}}^{+}, \text {etc. }
$$

the differential-difference eq.

$$
\begin{equation*}
f_{n+1}(\theta)=f_{n}^{\prime}(\theta)+n^{2} f_{n-1}(\theta) \tag{31}
\end{equation*}
$$

with inputs $f_{0}(\theta)=1 / \cosh \theta$ and $f_{1}(\theta)=f_{0}^{\prime}(\theta)$.
For general input $f_{0}(\theta)$ one uses
$f_{n}(\theta)=\sum_{m=0}^{n} f(n, m) \frac{d^{m}}{d \theta^{m}} f_{0}(\theta)=s_{n}\left(\frac{d}{d \theta}\right) f_{0}(\theta)$, with

$$
\begin{equation*}
s_{n}(\theta)=\theta s_{n-1}(\theta)+(n-1)^{2} s_{n-2}(\theta), \quad s_{0}(\theta)=1, s_{-1}(\theta)=0 \tag{32}
\end{equation*}
$$

Thus $\left\{s_{n}(\theta \rightarrow x)\right\}$ become Sheffer polynomials for $\left(\frac{1}{\sqrt{1-y^{2}}}\right.$, Artanh y).
The $f(n, m)$ triangle is the inverse of the $R(n, m)$ triangle. See [18], nr. A060524 (V. Jovovic)
There is the following combinatorial interpretation: $f(n, m)=\sum_{\vec{\alpha} \in \operatorname{Pao}(n, m)} M 2(\vec{\alpha})$.
$\operatorname{Pao}(n, m)$ stands for partitions of n with m odd parts (and possibly even ones). Again, partitions are written in the exponential form with exponents $\vec{\alpha}:=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
$M 2$ are the multinomial numbers [1], pp. 823, 831: $n!/ \prod_{j=1}^{n} j^{a_{j}} a_{j}!$.
Example: $5=f(3,1)=M 2([3])+M 2([1,2])=2+3$.
This is a reformulation of exercise 3.3.13. on p. 189 of [6]
For the considered physical problem the input is $f_{0}(\theta)=1 / \cosh \theta$. This leads to

$$
\begin{equation*}
f_{n}(\theta)=n!(1 / \cosh \theta)(-\tanh \theta)^{n} \tag{33}
\end{equation*}
$$

which coincides with the matrix elements $\left(0\left|\mathbf{A}^{n} \mathbf{U}(-\theta)\right| 0\right)$ with $\left.\left.\mathbf{U}(-\theta) \mid 0\right)=(1 / \cosh \theta) \exp \left(-\tanh (\theta) \mathbf{A}^{+}\right) \mid 0\right)$ due to $\left(0\left|\mathbf{A}^{n}\left(\mathbf{A}^{+}\right)^{m}\right| 0\right)=(n!)^{2} \delta_{n, m}$.

6 Conclusion

\star Two simple harmonic quantum oscillator problems feature some nice elements of the Sheffer group.

* Problem 1: Sometimes it is rewarding not to take the diretissima.
* Problem 2: Sometimes it is rewarding to take different routes to the same summit.

Acknowledgements

The author would like to thanks the DESFA (ISDE-SIDE-OPSFA) organizing committee for the invitation, the interesting program and the stimulating atmosphere.
Thanks go also to Dr. Stefan Gieseke (ITP Karlsruhe) for sharing his foil program.

TAB. 1: R(n,m) Sheffer triangle [18], nr. A060081

TAB. 2: a(n,m) array (as triangle [18], nr. A060074)

\mathbf{n} / \mathbf{m}	0	1	2	3	4	5	6	7
$\mathbf{0}$	1	0	0	0	0	0	0	
$\mathbf{1}$	1	1	5	61	1385	50521	2702765	199360981
$\mathbf{2}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{6 1}$	$\mathbf{1 3 8 5}$	$\mathbf{5 0 5 2 1}$	$\mathbf{2 7 0 2 7 6 5}$	$\mathbf{1 9 9 3 6 0 9 8 1}$	$\mathbf{1 9 3 9 1 5 1 2 1 4 5}$
$\mathbf{3}$	1	14	331	12284	663061	49164554	4798037791	596372040824
$\mathbf{4}$	1	30	1211	68060	5162421	510964090	64108947631	9954077496120
$\mathbf{5}$	1	55	3486	281210	28862471	3706931865	584856590956	111432850130020
$\mathbf{6}$	$\mathbf{1}$	91	8526	948002	127838711	20829905733	4059150905356	935210483855284
$\mathbf{7}$	1	140	18522	2749340	475638163	96508175400	22882712047924	6296554692590120
$\mathbf{8}$	1	204	36762	7097948	1544454483	384154309032	109415187933364	35575114290521256
\vdots								

TAB. 3: associated Sheffer triangle (1,tanh y), [18], nr. A111593

\mathbf{n} / \mathbf{m}	0	1	2	3	4	5	6	7	8	9	10
$\mathbf{0}$	1										
$\mathbf{1}$	0	1									
$\mathbf{2}$	0	0	1								
$\mathbf{3}$	0	-2	0	1							
$\mathbf{4}$	0	0	-8	0	1						
$\mathbf{5}$	0	16	0	-20	0	1					
$\mathbf{6}$	0	0	136	0	-40	0	1				
$\mathbf{7}$	0	-272	0	616	0	-70	0	1			
$\mathbf{8}$	0	0	-3968	0	2016	0	-112	0	1		
$\mathbf{9}$	0	7936	0	-28160	0	5376	0	-168	0	1	
$\mathbf{1 0}$	0	0	176896	0	-135680	0	12432	0	-240	0	1
\vdots											

TAB. 4: f(n,m) Sheffer triangle [18], nr. A060524

\mathbf{n} / \mathbf{m}	0	1	2	3	4	5	6	7	8	9	10
$\mathbf{0}$	1										
$\mathbf{1}$	0	1									
$\mathbf{2}$	1	0	1								
$\mathbf{3}$	0	5	0	1							
$\mathbf{4}$	9	0	14	0	1						
$\mathbf{5}$	0	89	0	30	0	1					
$\mathbf{6}$	225	0	439	0	55	0	1				
$\mathbf{7}$	0	3429	0	1519	0	91	0	1			
$\mathbf{8}$	11025	0	24940	0	4214	0	140	0	1		
$\mathbf{9}$	0	230481	0	122156	0	10038	0	204	0	1	
$\mathbf{1 0}$	893025	0	2250621	0	463490	0	21378	0	285	0	1
\vdots											

TAB. 5: associated Sheffer triangle (1,Artanh y) [18], nr. A111594

\mathbf{n} / \mathbf{m}	0	1	2	3	4	5	6	7	8	9	10
$\mathbf{0}$	1										
$\mathbf{1}$	0	1									
$\mathbf{2}$	0	0	1								
$\mathbf{3}$	0	2	0	1							
$\mathbf{4}$	0	0	8	0	1						
$\mathbf{5}$	0	24	0	20	0	1					
$\mathbf{6}$	0	0	184	0	40	0	1				
$\mathbf{7}$	0	720	0	784	0	70	0	1			
$\mathbf{8}$	0	0	8448	0	2464	0	112	0	1		
$\mathbf{9}$	0	40320	0	52352	0	6384	0	168	0	1	
$\mathbf{1 0}$	0	0	648576	0	229760	0	14448	0	240	0	1
\vdots											

References

[1] Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, reprinted as Dover publication, New York, 1972
[2] V. Bargmann, "On a Hilbert Space of Analytic Functions and an Associated Integral Transform, Part I", Commun. Pure \& Applied Math. 14, 3 (1961) 187-214 (K. O. Friedrichs anniversary issue)
[3] L. Carlitz, "On Arrays of Numbers", Am. J. of Mathematics $\underline{54,4}$ (1932) 739-752
[4] G. Dattoli, P.L. Ottaviani, A. Torre and L. Vázquez, "Evolution operator equations: integration with algebraic and finite difference methods [...]",Riv. del Nuovo Cimento, $2 \underline{20} 2$ (1997) 1-133
[5] V. A. Fock, ,, Verallgemeinerung und Loesung der Diracschen statistischen Gleichung", Z. Phys. $\underline{49}$ (1928) 339-357
[6] I. P. Goulden and D. M. Jackson, "Combinatorial Enumeration", Wiley, 1983
[7] E. Jabotinsky, "Analytic Iteration",Trans. Amer. Math. Soc. 108 (1963) 457-477
[8] D. E. Knuth, "Convolution polynomials", The Mathematica J., $\underline{2} .1$ (1992) 67-78
[9] W. Lang, "On Generalizations of the Stirling Number Triangles", on-line Journal of Integer Sequences, $\underline{3}$ (2000) Article 00.2.4
[10] J. Meixner, , Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion", J. London Math. Soc., 9 (1934) 6-13
[11] E. Neuwirth, "Recursively defined combinatorial functions: extending Galton's board", Discrete Maths. 239 (2001) 33-51
[12] S. Roman, "The Umbral Calculus", Academic Press, New York, 1984
[13] I. M. Sheffer, "Some Properties of Polynomial Sets of Type Zero", Duke J. of Maths. $\underline{5}$ (1939) 590-622
[14] I. E. Segal, "Mathematical characterization of the physical vacuum for a linear Bose-Einstein field", (Foundations of the dynamics of infinite systems. III), Illinois J. Math. $\underline{6}$ (1962) 500-523
[15] I. E. Segal, "The complex wave representation of the free Boson field", in "Topics in functional analysis: essays dedicated to M. G. Krein on the occasion of his 70th birthday", Advances in Mathematics: Supplementary studies, Vol. 3 (I. Gohberg and M. Kac, Eds.), Academic Press, New York, 1978, pp. 321-344.
[16] L. W. Shapiro, Seyoum Getu, Wen-Jin Woan and L. C. Woodson, "The Riordan Group", Discrete Appl. Maths. $\underline{34}$ (1991) 229-239.
[17] Th. Spernat, „Clifford-Algebren in der Quantenmechanik", Diplomarbeit 2004, Dortmund,
[18] N.J.A. Sloane's On-Line Encyclopedia of Integer Sequences, http//:www.research.att.com/ ~njas/sequences/index.html
[19] H. Umezawa, H. Matsumoto and M. Tachiki, "Thermo Field Dynamics and Condensed States ", North-Holland, 1982

AMS MSC numbers: 05A17, 26C99, 30C35.

[^0]: ${ }^{1}$ E-mail: wolfdieter.lang@physik.uni-karlsruhe.de, http://www-itp.physik.uni-karlsruhe.de/~ wl

