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Abstract

A combinatorial interpretation of the earlier studied generalized Stirling numbers,
emerging in a normal ordering problem and its inversion, is given. It involves unordered
forests of certain types of labelled trees. Partition number arrays related to such forests
are also presented.

1 Introduction and Summary

The generalized Stirling numbers of the second kind S(k; n,m), k ∈ Z, n, m ∈ N0, appear
in the normal ordering of powers (xk dx)

n according to

(xk dx)
n =

n∑
m=1

S(k; n,m) xm+(k−1) n d m
x . (1)

In the inverse problem the generalized Stirling numbers of the first kind s(k; n,m) enter as

xkn d n
x =

n∑
m=1

s(k; n,m) x(k−1)(n−m) (xk dx)
m . (2)

These numbers coincide for k = 1 with the ordinary Stirling numbers. The author [15] has
investigated the k−families of number triangles S(k) and s(k) earlier 1. For given k the
recurrence relations are:

S(k; n,m) = ((k − 1)(n− 1) + m) S(k; n− 1,m) + S(k; n− 1,m− 1) (3)

1In this reference the notation is different, namely S2 and S1 are used for S and s, respectively. The
associated number triangles s2 and s1 will not appear in the present work.
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and
s(k; n,m) = −[(k − 1) m + n− 1] s(k; n− 1,m) + s(k; n− 1, m− 1) , (4)

with the triangle conditions: S(k; n,m) = 0 for n < m, and S(k; n, 0) = δn,0 . δn,m is
the Kronecker symbol. Similarly: s(k; n,m) = 0 for n < m, and s(k; n, 0) = δn,0 . The
S(k; n,m) numbers have already been considered by Carlitz [8] as special cases. See eq. 2
there, with µ → 1 and λ → k − 1. They also have been used by Comtet in [10, 4.Example]
with Pn,l(a) = S(a + 1; n, l), where the recurrence and an explicit form involving a sum has
been given. The ordinary Stirling numbers of the second kind have been encountered in the

reordering problem as stated above by Grunert [13, §4 ff.], where C
k
n = S(1; k, n) = S(k, n).

A combinatorial interpretation of the S(n,m) numbers is well known: there are S(n,m)
ways to partition a set of n elements into m nonempty subsets. Therefore, these numbers
are also called subset numbers in Graham et al. [12, p. 244]. See also Stanley [19, p. 33],
and Charalambides [9, p. 96 and ch. 8]. As a spin-off we shall find another interpretation as
numbers of forests composed of certain increasing trees.

The aim of this paper is to find combinatorial meanings for the k−families |S(k;n,m)|
and |s(k;n,m)|. Because all these lower diagonal number triangles are of the Jabotinsky
(a special Sheffer) type, i.e., 2 the binomial (also called exponential) convolution property,
they count unordered m−forests composed of certain vertex labelled trees with n vertices.
These trees will be enumerated by |S(k; n, 1)| and |s(k; n, 1)|, respectively, for each k ∈ Z.
S(k; n, 1), for k ∈ N, will be seen to give the number of plane, k−ary rooted increasing trees
with n vertices (including the root vertex). This stems from the fact that the exponential
generating functions (e.g.f.) of these numbers are [15]

g2(k; x) = −1 + (1 + (1 − k) x)
1

1−k , k = 2, 3, ..., (5)

and g2(1; x) = −1 + ex. Such trees fit into the varieties of trees investigated by Bergeron
et al. [3], leading to the stated result. g2(0; x) = x represents the trivial one vertex tree,
the root with label 1.

The signless (also called absolute) numbers |S(−k; n,m| = (−1)n−m S(−k; n,m), k ∈ N0,
have for their first column members |S(−k; n, 1| the e.g.f.

g2p(k; x) = 1 − (1 − (k + 1) x)
1

k+1 = − g2(−k;−x) , k ∈ N0 . (6)

This also fits into the varieties of increasing trees considered by Bergeron et al. [3] because
plane increasing trees with vertices of outdegree r ∈ N0 come in (r + k − 1) types. They
will be called (incomplete) (r + k− 1)−ary trees. In general an outdegree r = 0 is reserved
for the one vertex tree given by the root and for leaves (end vertices) of a tree. The one
vertex tree is always considered separately because it always appears just once. Instead of
(r + k − 1)-ary vertices one can also use a repertoire of r + k − 1 colors and chose r of
them to color the successors of a vertex with outdegree r = 0, 1, .... The color for the one
vertex tree is taken as white (no color).

The non-negative numbers |s(k; n,m)| = (−1)n−m s(k; n,m), k ∈ N0, with e.g.f. for the
first column members |s(k; n, 1)|

g1p(k; x) =
1

k − 1

(
−1 +

1

(1 − x)k−1

)
, k = 0, 2, 3, ... (7)
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and g1p(1; x) = − ln(1 − x), do, for k ≥ 3, not count any of the tree varieties considered by
Bergeron et al. [3]. The case k = 0 is trivial, because there is just the trivial tree composed
of one vertex, the root. The case k = 1 — the ordinary unsigned Stirling numbers of the first
kind — is encompassed by this study [3] in that |s(n, 1)| counts the number of unordered
(nonplane) increasing rooted trees with n vertices. This provides another combinatorial
meaning besides their usual cycle number characterization. It turns out that these trees are
the nonplane analogons of the plane ones counted by |S(−1; n, 1)|. Also the k = 2 instance,
|s(2; n, 1)|, fits into the above mentioned study because one finds that these numbers coincide
with S(2; n, 1) which counts plane binary increasing trees. These are the unsigned Lah
numbers, Sloane’s OEIS [18, |A008297| (first column, m = 1)]. It is also possible to give
these numbers a meaning in the nonplane increasing tree setup. For all k ≥ 3, however,
the [3] varieties are not sufficient. In accordance with the recurrence relation one can give
a somewhat trivial tree and forest interpretation for the |s(k; n,m)| numbers. For example,
|s(3; n, 1)| counts the number of n vertex (including the root) increasing plane trees with only
outdegrees 0 and 1 where every vertex of depth d ∈ N0 is of the (d + 3)-ary type. The depth
of a vertex is its distance from the root, the number of parents. Another equivalent way to
define these numbers uses special depth dependent vertex coloring for trees with outdegrees
0 and 1. This situation pertains to all k ≥ 3, providing thus new classes of increasing trees
not covered by the study [3].

The non-negative numbers s(−k; n,m) with k ∈ N, have as e.g.f. for s(−k; n, 1)

g1(−k; x) =
1

1 + k
(−1 + (1 + x)1+k) = −g1p(−k;−x) , k ∈ N . (8)

For every k ∈ N it follows that these numbers do also not count trees of the variety considered
by Bergeron et al. [3]. Again, the recurrence relation (4) helps to identify trees and forests
with only outdegrees 0 and 1 which are counted by these s(−k; n,m) numbers.

Finally, maps from the set of partitions of n with m parts to numbers counting various
types of forests considered in this work are presented. These number arrays will be called
partition number arrays. The generalized Stirling numbers are sums over these array numbers
for fixed part number m.

2 Generalized Stirling numbers of the second kind

As anticipated in the Introduction the generalized Stirling numbers |S(k; n,m)| and |s(k; n,m)|
count for many k values (but not for all) certain m-forests of increasing trees, either plane
or nonplane, which fall into the varieties of trees studied by Bergeron et al. [3]. Therefore,
some results from this study which are important for this work will be recapitulated.

We start with some definitions and refer the reader to Stanley [19, Appendix, pp. 293–5],
for general definitions regarding trees and forests. For trees the notions plane and ordered
are synonyms. This may seem confusing because, e.g., in Fig. A-2, p. 295 of this reference,
the second tree would be equivalent to the last one if in the plane a rotation of subtrees
around the root vertex would be allowed.
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Definition 1. A labelled tree of size n, Tn, is a rooted tree with n vertices (nodes),
including the root vertex, labelled with distinct elements from the set [n] ≡ In = {1, 2, ..., n}.
Definition 2. An increasing tree of size n is a labelled tree of size n with the sequence of
labels from the root to any leaf (end vertex with degree 1, outdegree 0) increasing.

Example 3. Stanley [19, p. 295, Fig. A-2] shows some ordered increasing trees of size
6. There are more than the two types shown, viz., C5 = 42 (the fifth Catalan number).
Altogether there are 9!! = 945 ordered increasing trees of size 6 (compare with our Figure 4).

For the analysis the most important object is the generating function (g.f.) for the
numbers sr of available vertex types with outdegree r. For the root, the outdregree coincides
with the degree. The trivial one vertex tree consists of the root with r = 0, and there is
always only one vertex type s0 = 1. For trees with more than one vertex, the leaves (end
vertices) have also r = 0 but degree 1. For ordered (plane) trees the ordinary generating

function (o.g.f.) φ(y) = 1 +
∑
r≥1

sr yr enters, and for unordered (nonplane) trees the e.g.f.

ϕ(y) = 1 +
∑
r≥1

sr
yr

r!
is used. For example, for incomplete ternary (3-ary) trees one has

φ(y) = 1 + 3 y + 3 y2 + y3 in the ordered case, and ϕ(y) = 1 + 3 y + 3
y2

2!
+

y3

3!
in

the unordered case. s0 = 1, as mentioned above, and a ternary vertex has three possible out
legs (usually drawn downwards at equal angles). Therefore s1 = 3 because there are three
possible legs to chose. s2 = 3 because one of the three possible legs is not present. s3 = 1
because there is only one type of vertex with all three legs present. The ordered trees shown
in Stanley [19, Fig. A-2, p. 295] could belong to φ(y) = 1 + 2 y + y2 = (1 + y)2, i.e.,
ordered (incomplete) binary trees.

Proposition 4. [3]

If Y (z) =
∑
n≥0

Yn
zn

n!
is the e.g.f. for {Yn}, with Yn the number of increasing labelled trees

of size n, and φ(y), resp. ϕ(y), the outdegree g.f.s, then

∫ Y (z)

0

dy

Φ(y)
= z,with Φ ∈ {φ, ϕ} . (9)

A differential way of writing this is
dY (z)

dz
= Φ(Y (z)) together with the initial condition

Y (0) = 0 (no tree of size 0). The explicit solution is written in the form of an Abel equation
cf. [2, p. 14, (1.17) and footnote 7]).

Y (z) = F [−1] [F (0) + z] , with F [y] :=

∫
dy

Φ(y)
. (10)

Here F [−1] denotes the compositional inverse of F , the primitive (anti-derivative) of 1/Φ.
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Proof. First one recalls that

∫ z

0

W (t) dt is the e.g.f. for numbers {wr−1} if W (t) is the

e.g.f. for numbers {wr} (index shift by −1 via integration). In the application below this
integration will account for the inclusion of the extra root vertex if powers of t correspond
to the number of vertices. The proof of the solution of the differential eq. for Y (z), i.e.,

Y (z) =

∫ z

0

Φ(Y (t)) dt, is based on the recursive structure of increasing trees characterized

by the outdegree g.f. Increasing trees Tn of size n are composed of ordered, resp. unordered,
r−forests (r ≥ 1) of such trees of size n − 1. These r trees are connected to the root
of the tree Tn by r lines ending at the root labelled 1. The r−forest vertices are labelled

with 2, 3, ..., n. These r−forests have e.g.f. Y r(z), resp.
1

r!
Y r(z). Therefore the sum over

all possible outdegrees r ≥ 0 of the root vertex yields 1 +
∑
r≥1

sr Y r(t) = φ(Y (t)), resp.

1 +
∑
r≥1

sr
Y r(t)

r!
= ϕ(Y (t)). Here we use the variable t instead of z. The extra root vertex

with label 1 is then accounted for by the index shift by −1, and, as explained above, this is
achieved by integration, resulting in

Y (z) =

∫ z

0

Φ(Y (t)) dt, hence Y (0) = 1 . (11)

Note 5. Y r(z), and also
1

r!
Y r(z), are given by the multinomial theorem in terms of the

partition number array called M3 in Abramowitz and Stegun [1, p. 831]. See also Slone’s
OEIS [18, A036040]. Within each of the r parts of the partition of n the order is taken
w.l.o.g. increasing. We shall expand on this in Section 4.

Note 6. It is easy to see that the number of ordered rooted trees of size n (including
the root vertex) is Cn, the nth Catalan number. See Slone’s OEIS [18, A000108]. The
tree number o.g.f. c satisfies c(x) =

∑∞
r=0 (x c(x))r = 1

1− x c(x)
, which is obvious from the

recursive structure of these trees. The extra x−factor accounts for the root vertex. See also
Conway and Guy [11, p. 99], where these trees are called plane rooted bushes. This coincides
with the eq. for the o.g.f. for Catalan numbers.

Note 7. Cayley’s classical result from 1889 [20, pp. 23, 37, 66] and [4, p, 39] on the number
tn of unordered trees of size n with any labeling from In can be obtained in a similar manner.
The outdegree e.g.f. is now ϕ(z) = exp(z) because sr = 1 for all r ≥ 0. The e.g.f. for the
numbers {tn} of such trees is, by their recursive definition, Y (z) = z ϕ(Y (z)) = z exp(Y (z)),
because the root can now have any of the labels 1, 2, ..., n, and {n fn−1} is exponentially
generated by z f(z) if {fn} is exponentially generated by f . This holds for any r-forest.
Then the sum over the outdegrees r ≥ 0 of the root vertex is taken. The just found implicit
equation for Y (z), can be solved via Lagrange inversion as

Y (z) =
∞∑

n=1

xn

n!

(
dn−1

dan
ϕn(a)

)∣∣∣∣
a=0

=
∞∑

n=1

tn
zn

n!
. (12)
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With ϕ(a) = exp(a) this becomes the classical result tn = nn−1. This is the sequence
[1, 2, 9, 64, 625, ...], see Sloane’s OEIS [18, A000169].

Example 8. Ordered increasing (incomplete) k−ary trees
For such trees the outdegree e.g.f. is ϕk(y) = (1 + y)k because there are sk;r =

(
k
r

)
different types of outdegree r ≥ 1 vertices. E.g. k = 4, r = 2: s3;2 = 6 from choosing

two lines out of a 4−ary vertex. Fk(y) =

∫
dy

1

(1 + y)k
, which is (up to a constant)

F1(y) = ln(1 + y) and Fk(y) = 1
1−k

(1 + y)1−k, k ≥ 0, k 6= 1. F
[−1]
1 (x) = exp(x) − 1,

and F
[−1]
k (x) = −1 + ((1 − k) x)

1
1− k . Therefore, Y1(z) = exp(z) − 1, and Yk(z) =

−1 +

(
(1− k) (

1

1− k
+ z)

) 1
1−k

= −1 + ( 1 + (1− k) z )
1

1−k . for k ≥ 0, k 6= 1. k = 1

applies for unary trees, and for k = 0 one has Y0(z) = z corresponding to the trivial tree
with just one vertex, the root with label 1. For binary trees Y2(z) = z

1− z
, producing the

sequence {n!}∞1 , Sloane’s OEIS [18, A000142].

Proposition 9. |S(k; n,m)|, resp. |s(k; n,m)|, with k ∈ Z, is the number of unordered
m−forests composed of m trees with altogether n vertices (including the m roots). The
number of such trees is exponentially generated by the g2 and g1 functions given in the
Introduction.

Proof. This follows immediately from the Jabotinsky (a special Sheffer) structure of the
lower diagonal number triangles S(k), resp. s(k). See Knuth [14] for a general discussion
of Jabotinsky triangles. In other words, they are exponential convolution triangles. This
means that the e.g.f. for the m−th column numbers (n ≥ m) is for k ∈ N given by

g2m(k; x) :=
∑

n=0 (m)

S(k; n,m)
xn

n!
=

1

m!
(g2(k; x))m, resp. (13)

g1pm(k; x) :=
∑

n=0 (m)

|s(k; n,m)| x
n

n!
=

1

m!
(g1p(k; x))m . (14)

Similar eqs. hold with −k ∈ N for g2pm(k; x) and g1m(k; x). The forests are unordered due
to the e.g.f. Jabotinsky structure with the factor 1/m!.

Thus one only has to find a combinatorial interpretation for the m = 1 column numbers
of such lower triangular Jabotinsky matrices. The column m = 0 is not relevant, it is always
[1, 0, 0, ...]>.

Proposition 10. S(k; n, 1), k ≥ 0
S(k; n, 1), k ≥ 1, is the number of ordered rooted k−ary trees of size n (including the root
vertex) increasingly labelled with distinct elements from In = {1, 2, ..., n}. For k = 0 there
is only one vertex (n = 1), the root, and S(0; n, 1) = δn,1.

Proof. From Proposition 4, the Example 8, and the e.g.f.s g2(k; x) given in (5).
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Example 11. S(3; n, 1), n = 1, 2, 3, 4.
In Figure 1 the ordered ternary (3-ary) trees with sizes n = 1, 2, 3 and 4 are shown without
vertex labeling. The (hidden) root label is used there to numerate the different trees. The

number of such trees of size n is [1, 3, 12, 55, ...], i.e.,

(
3n

n

)
/(2n + 1) =

(
3 n

n− 1

)
/n. See

Sloane’s OEIS [18, A001764]. This formula follows from the general one for k−ary trees, see
Note 12 below. If now increasing trees are considered, one finds for the 12 trees with size n =
4, in the order given in Figure 1, the number of different labelings [2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1],
altogether 15, and indeed S(3; 3, 1) = 15 = 5!! := 1 ·3 ·5. For the triangle S(3) see Sloane’s
OEIS [18, A035342]. For n = 4 the 55 unlabeled trees shown in Figure 1 can be labelled
increasingly in [3!, 2, 1, 18 · 3, 4 · 2, 6 · 1, 2 · 2, 12 · 1, 2 · 2, 8 · 1] ways. Altogether this is 105, and
indeed S(3; 4, 1) = 105 = 7!!.

Note 12. The number tk(n) of ordered rooted k−ary trees of size n is obtained from
the equation for the o.g.f. Tk(x) =

∑∞
n=1 tk(n) xn, viz., Tk(x) = 1 + x (Tk(x))k =

1

1 − x (Tk(x))k−1
, via Lagrange inversion. This yields the Pfaff-Fuss-Catalan- or k−Raney

sequences [12, p. 347, (7.66)] and Sloane’s OEIS [18, A000108, A001764, A002293, A002294,
A002295, A002296, A007556, A062994] for k = 2, 3, ..., 9. The formula is

tk(n) =

(
k n

n

)
1

(k − 1) n + 1
=

(
k n + 1

n

)
1

k n + 1
.

Proposition 13. Organic growth of ordered k-ary increasing trees
All rooted ordered increasing k−ary trees of size n are obtained from all such trees of size
n − 1 by adding in all possible ways, respecting the k−arity, the branch with leaf labelled n
to every vertex of each tree of size n− 1.

Proof. It is clear that by this growth prescription the increasing labeling is respected. It is
also clear that it leads only to size n trees of the k−ary type, because the new branch can
only be appended in free k−ary directions from each vertex. Given any such size n tree,
an amputation of the branch with leaf labelled n will produce a tree of size n − 1 of the
considered type. In fact, no different size n− 1 trees of this type can grow to the same size
n tree. This shows that all such size n trees are grown.

Proposition 14. Recurrence for S(k; n, 1), k ∈ N, recovered

a
(k)
n , the number of size n rooted ordered k−ary increasing trees satisfies the recurrence

a(k)
n = (k (n− 1) − (n− 2)) a

(k)
n−1 , a

(k)
1 = 1, n = 2, 3, 4, ... (15)

Proof. Consider any size (n− 1) tree. The number of lines E of such a tree is n− 2. Clearly,∑n−1
i=1 ri = E = n − 2 with the outdegree ri of the vertex with label i. Now attach

the branch with leaf labelled n to the vertex with label i . This can be done in k − ri

ways (using one of the free k−ary line places). Summing over all n− 1 vertices thus yields∑n−1
i=1 (k − ri) = k (n− 1)− (n− 2). Therefore, any of the a

(k)
n−1 trees of size n− 1 grows to

k (n−1)−(n−2) = (k−1) (n−1) + 1 different new trees of size n. This recurrence coincides
with the one for S(k; n, 1), k ∈ N, obtained from (3) as it should due to Proposition 10.
For the solution of this recurrence see [15].
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The non-negative numbers |S(−k; n, 1)| = (−1)n−1 S(−k; n, 1), k ∈ N0, also fit into the
varieties of increasing trees studied by Bergeron et al. [3].

Proposition 15. |S(−k; n, 1)|, k ≥ 0
|S(−k; n, 1)|, k ∈ N0, is the number of ordered rooted increasing trees of size n with outdegree

o.g.f. Φk(y) =
1

(1− y)k
, i.e., sk;r =

(
r + k − 1

k − 1

)
=

(
r + k − 1

r

)
. For k = 0 one has

s0;r = δr,0.

Proof. Proposition 4, (10) , leads to Fk(y) =

∫
dy (1− y)k = − 1

k + 1
(1 − y)k+1 with

Fk(0) = −1/(k+1). F
[−1]
k (x) = 1 − (−(k+1) x)1/(k+1). Yk(z) = 1 − (1 − (k+1) z)

1
k+1 =

g2p(k; z), with the e.g.f. of the numbers {|S(−k; n, 1)|} given in (6).

The numbers sk;r defined above show that for given k ≥ 1 one has to consider ordered
rooted trees with (r + k − 1)−ary vertices if their outdegree is r ≥ 1. If r = 0 (for the
single root vertex or the leaves) there is only one vertex type. This leads to the following
corollary.

Corollary 16. |S(−k; n, 1)|, k ∈ N0, is the number of ordered rooted increasing trees of size
n with outdegree r ≥ 0 vertices of the (r + k − 1)−ary type.

Trees of this type, with outdegree r dependent arity, will be called rooted ordered (r +
k − 1)−ary increasing trees in the sequel.

Example 17. |S(−3; n, 1)|
The triangle |S(−3)| (meaning the signless triangle S(−3)) is given in Sloane’s OEIS [18,
A000369]. For the sequence |S(−3; n, 1)|, the m = 1 column of this triangle, see A008545.
From s3;r =

(
r+2

r

)
one has (r + 2)−ary vertices for outdegree r. First one considers the

ordered rooted trees of size n without vertex labels. For n = 1, 2, 3, 4, 5 see e.g., Conway
and Guy [11, p. 99, Fig. 4.7] (called rooted plane bushes, with missing leave vertices, and
depicted upside-down). Then the multiplicity for increasing labelings is determined. See our
Figure 2 for n = 1, 2, 3, 4, Figure 3 for n = 5 and Figure 4 for n = 6.

Instead of using (r + k − 1)−ary vertices of outdegree r ≥ 0 which can become
cumbersome to draw, it is simpler to color the r successor vertices of an outdegree r vertex
from a repertoire of pairwise different colors Ci, i = 1, 2, ..., (r + k − 1). (These colors Ci

will not be confused with Catalan numbers.) The color indices are taken as Ci1 , Ci2 , ..., Cir ,
1 ≤ i1 < i2 < ... < ir ≤ (r + k − 1) if the vertices are considered from the left to
the right. The root vertex can have any color, say C0. This coloring is done independently
for each non-root vertex. In this way the different colors mimic the different possible leg
positions for an (r + k − 1)−ary vertex. This is the content of the next corollary.

Corollary 18. Rooted ordered vertex colored increasingly labelled trees
|S(−3; n, 1)|, k ∈ N0, is the number of rooted ordered increasing trees of size n and the r
successor vertices of a predecessor vertex with outdegree r have colors Ci1 , Ci2 , ..., Cir , 1 ≤
i1 < i2 < ... < ir ≤ (r + k − 1) when read from the left to the right. The root vertex
carries a color C0.
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Example 19. For k = 3 the tree with n = 4 vertices and outdegree r = 3 of the root
vertex can have for its leaves

(
5
3

)
= 10 color configurations C1 C2 C3, C1 C2 C4, C1 C2 C5,

C1 C3 C4, ..., C3 C4 C5. The root has color C0. Each of these 10 colored trees is then labelled
increasingly, producing altogether 10 · 3! = 60 such trees with r1 = 3. The root has, of
course, label 1. Cf. Figure 2, n = 4, first row.
Also the specific trees of size n counted by |S2(−3; n, 1)|, k ∈ N, can be obtained from those
of size n − 1 by adding a branch with a leaf labelled n. In the drawing of these trees one
uses s branches of two kinds for an s−ary vertex with outdegree r ≤ s; a solid line for each
of the r outgoing lines and s − r dashed lines for the remaining ones. These s lines of two
types are usually drawn downwards form the vertex in a symmetric way, i.e.. the relevant
angle is π/(s + 1). The first and the last line have this angle with the imagined horizontal
reference axis through the vertex. Neighboring lines also span this angle.

Proposition 20. Organic growth of ordered (r + k − 1)-ary increasing trees
All rooted ordered (r + k − 1)−ary trees of size n are obtained from all such trees of size
n− 1 by adding in the following way a branch with leaf labelled n to every vertex of each tree
of size n− 1. A vertex with outdegree r in the size n− 1 tree has (r − 1 + k) − r = k − 1
dashed lines. The solid line with leaf labelled n is now put at any of the new r + k places
available for an (r + k)−ary vertex. The type (solid or dashed) of the remaining lines are
carried over from the vertex of the tree of size n− 1 to the remaining r + k − 1 line places.
In this n− 1 → n growing process the angle between the lines is diminished, of course.

Proof. It is clear that by this growth prescription the increasing labeling is respected. By
construction only trees of the considered (r − 1 + k)−ary type are grown. In fact, all rooted
ordered (r − 1 + k)−ary increasing trees of size n are grown this way. Just amputate the
(solid) leg with label n and enlarge the angles between the remaining lines of both types,
appropriate for the arity of the vertex in the size n− 1 tree. No different size n− 1 trees of
the considered type can grow to the same size n tree.

Proposition 21. |S(−k; n, 1)| recurrence recovered

b
(k)
n , the number of size n rooted ordered (r − 1 + k)−ary increasing trees satisfies the

recurrence
b(k)
n = (k (n− 1) + (n− 2)) b

(k)
n−1 , b

(k)
1 = 1, n = 2, 3, 4, ... (16)

Proof. Consider any size (n−1) tree of the relevant type. See the proof of Proposition 14 for∑n−1
i=1 ri = n−2 with the outdegree ri of the vertex with label i. The growing prescription of

Proposition 20 shows that for each vertex vi with label i and outdegree r ≥ 0 there are k + r
possible places for the line with label n, because the new vertex vi has become (k + r)−ary
in the size n tree. The other (k + r − 1) lines of both types are carried over (with diminished
angle between the lines) from the vertex vi of the size n−1 tree. For every vertex vi there are
thus (k + r) new configurations for this vertex labelled i in the size n tree. Summing over
all vertices of the size n− 1 tree yields

∑n−1
i=1 (k + ri) = k (n− 1) + (n− 2). Therefore, any

of the b
(k)
n−1 trees of size n− 1 grows to k (n − 1) + (n − 2) = (k + 1) (n− 1) − 1 different

new trees of size n. The shown recurrence coincides with the one for |S(−k; n, 1)|, k ∈ N,
obtained from (3) as it should due to Corollary 16. For the solution of this recurrence see
[15].
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Note 22. Colored increasing trees
Also the colored version of the increasing trees described in Corollary 18 can be grown by
appending a new line with label n and a certain color to every vertex i with outdegree ri,
i.e., ri colored successors. The growth prescription can be immediately read off from the
corresponding (ri + k − 1)−ary vertex labelled i. One just observes the pattern of dashed
(unused) and solid lines from this vertex in the size n − 1 tree. It shows which colors from
the repertoire {C1, C2, ..., Cri + k− 1} are used (correspond to solid lines) in this order. Each
such vertex labelled i with colored successors is then grown to precisely ri + k new vertices
with label i by appending the line with label n in all possible ri + k colors available for
an outdegree ri + 1 vertex. The remaining ri successor lines carry the labels in the same
order like in the original size n − 1 tree and the colors follow the pattern of the original size
n − 1 tree (corresponding to the pattern of dashed and solid lines in the (ri + k − 1)−ary
version), This means that in general the color of a successor vertex with a given label will be
different in the original and the grown tree. An example will make this clear. Take k = 2,
ri = 3, n = 7. In the size n − 1 = 6 tree ri + k − 1 = 4 different colors are available for
the three successor vertices which have one from

(
6
3

)
= 20 possible labelings, say 3, 2, 6, in

this order. Consider the vertex coloring C1, C2, C4. This can be encoded as
3 2 6
1 2 4

where

the upper row stands for the labels and the lower one for the color indices. The grown tree
of size 7 will now have attached to this vertex i a leg with the vertex labelled 7 and e.g.,

color C4. This will correspond to the new vertex i with successor vertices
3 2 7 6
1 2 4 5

.

C3 is missing because in the original color pattern the third color was missing and in the
grown case the available Colors are C1, C2, C3, C5 because the label 7 vertex has color C4.
The third color, here C3, has to be skipped, thus producing the color sequence C1, C2, C4, C5

for the successor vertices. The other four grown successor vertices are then
7 3 2 6
1 2 3 5

,

3 7 2 6
1 2 3 5

,
3 2 7 6
1 2 3 5

and
3 2 6 7
1 2 4 5

.

3 Generalized Stirling numbers of the first kind

The generalized non-negative Stirling numbers of the first kind |s(k; n,m)| = (−1)n−m s(k; n,m),
k ∈ N, which arise from the (infinite) matrix inversion s(k)S(k) = 1∞ = S(k) s(k) (con-
sidered for N × N matrices with N arbitrary large) are also of the Jabotinsky type, and
therefore these numbers will also count unordered m−forests of trees of size n provided
one can define them such that there are |s(k; n, 1)| such trees. From the e.g.f. of the
numbers |s(k; n, 1)|, given in (7), one derives the outdegree function Φk(y) by putting

Yk(z) = g1p(k; z) in Proposition 1, computing
d Yk(z)

dz
= (1 − z)−k and rewriting this for

k ≥ 2 as (1 + (k − 1) Yk(z))
k

k−1 . Therefore

Φk(y) = (1 + (k − 1) y)
k

k−1 , k ≥ 2, (17)

and from Y1(z) = −ln(1 − z) one finds Φ1(y) = exp(y) .
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Because for every outdegree r the vertex type number sr has to be a non-negative integer
one needs for k = 1 the e.g.f. ϕ(y) = exp(y). Therefore |s(1; n, 1)| = |s(n, 1)| counts
unordered (nonplane) increasing trees of size n. This provides another combinatorial meaning
of these numbers besides the number of permutations of n elements which in their cycle
decomposition consist of just one cycle. This number is, of course, (n− 1)!.

Example 23. The number of unordered increasing trees of size 4 with one type of vertex
for all outdegrees r ≥ 0 is |s(1; 4, 1)| = 3! because there are four types of trees, viz., the
ones with r1 = 3; r1 = 2; r1 = 1, r2 = 2 and ri = 1, i = 1, 2, 3, which come respectively
in 1, 3, 1 and 1 increasing labelings. Remember that ri is the outdegree of the vertex with
label i. Hence 1 + 3 + 1 + 1 = 6 = 3!.

For k = 2 one can take the outdegree o.g.f. φ2(y) = (1 + y)2 or the e.g.f. ϕ2(y) =

1 + 2 y + 2
y2

2!
. In the first case one has to consider ordered increasing (incomplete) binary

trees. Such trees have already been encountered in the last section, where they were shown
to be counted by S(2; n, 1), the unsigned Lah numbers, Sloane’s OEIS [18, |A008287| ].
Therefore |s(2; n, 1)| = S(2; n, 1), which is also clear from their recurrence relations with
inputs. In the outdegree e.g.f. case |s(2; n, 1)| counts unordered (nonplane) increasing trees
with two types of vertices for both outdegrees 1 and 2 because s1 = 2 = s2. We shall use
two-colored vertices in both outdegree cases. No other outdegree besides r = 0, coming
only in one vertex type (s0 = 1), is allowed. The single root vertex in the size 1 tree and
the leaves (r = 0) are left uncolored (color C0). This gives another interpretation of the
unsigned Lah numbers. See 5 for these trees of size n = 4. Only three types of trees are
relevant here. The tree with r1 = 3 is not allowed.
While |s(k; n,m)| for k = 1 and k = 2 counts trees of varieties considered by Bergeron et
al. [3] this remains no longer true for k ≥ 3 as is obvious from the expansion of Φk from
(17). In these cases the vertex multiplicities sk;r for outdegree r are no longer non-negative

integers. This applies to the o.g.f. φ as well as to the e.g.f. ϕ. E.g., φ3(y) = (1 + 2 y)
3
2 ,

s3;r = 2r

(
3
2

r

)
, which is

3

2
for r = 2 and −1 for r = 3. Similarly, ϕ3(y) = (1 + 2 y)

3
2 ,

s3;r = 2r r!

(
3
2

r

)
which is −3 for r = 3. This fact is summarized in the following proposition.

Proposition 24. For k ≥ 3 values |s(k; n, 1)| does not count increasing trees of some variety
studied by Bergeron et al. [3], i.e., there exists no outdegree function Φk which generates
non-negative integers sk;r for all r ≥ 0.

In order to find a tree counting interpretation also for these numbers |s(k; n, 1)| =: ck
n

with k ≥ 3 one can resort to the recurrence relation obtained from (4)

c(k)
n = (k + n − 2) c

(k)
n−1 , c

(k)
1 = 1 , n ≥ 2 . (18)

For the solution of these recurrences see [15]. For k = 3 this is Sloane’s OEIS [18, A001710]
= [1, 3, 12, 60, 360, ...]. One can consider trees with outdegree r = 0 and r = 1 vertices
only but take (d + 3)−ary vertices if the depth of the vertex (the distance from the root) is
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d ≥ 0. For size n = 1 there is only the root vertex with r = 0. For n = 2 the root vertex
with r = 1 has depth d = 0 and is now taken 3−ary. The second vertex has r = 0, depth
d = 1, but its 4−arity does not matter. This leads to three trees like for the 3−ary trees
considered in the last section for k = 3 and n = 2. For size n = 3 one has the root with
r = 1, d = 0 as a 3−ary vertex, the d = 1 vertex with r = 1 is now 4−ary. Again the
arity of the leave with d = 2 does not matter. Thus one finds for each of the three n = 2
trees four new ones; altogether there are 12 = c

(3)
3 trees. If only trees but not forests are

considered the increasing labeling from In coincides for each vertex with d + 1.
Instead of employing in the k = 3 case (d + 3)−ary vertices, if their depth is d, one may
again use colors for their next successor vertices. The vertex of depth d ∈ {0, 1, ..., n− 1} in
a size n tree comes thus in d + 2 colors {C1, C2, ..., Cd+2} for d ≥ 1 and if d = 0 one takes
color C0. It is clear that such type of trees with label depending arity and outdegree only 0
and 1 is not covered in the study [3], because for all vertices with given outdegree r the same
number sr of vertex types (arity) is prescribed. In the trees considered here, an outdegree
1 vertex can have depth depending vertex type numbers s3;1,d. Therefore one would need a
two variable degree-depth polynomial to treat such trees.
The generalization to any k ≥ 3 is obvious and is the content of the next proposition were
instead of different aryties colors are used. It is also possible to apply this for the cases
k = 1 and k = 2.

Proposition 25. Vertex colored trees counted by |s(k; n, 1)| , k ≥ 1
|s(k; n, 1)| , k ≥ 1, is the number of rooted size n trees with vertices of outdegree r =
0 and 1 only, increasingly labelled from In and colors chosen from the color repertoire
{C1, C2, ..., Cd+k−1} if the vertex has depth d ∈ {0, 1, ..., n − 1}. The root vertex with la-
bel 1 and depth 0 carries color C0.

For k = 1 the usual Stirling numbers |s(n, 1)| = (n−1)! arise here from the independent
color choices of the depth d vertices. For k = 2 one has d + 1 colors to choose from for
vertices of depth d ∈ {1, 2, ..., n − 1} which produces 2 · 3 · ... · n = n! possibilities. This is
appropriate for the unsigned Lah numbers |s(2; n, 1)|.
Note 26. |s(k; n, 1)| as an answer to an urn problem
It is clear from Proposition 25 that |s(k; n, 1)|, k ∈ N, counts the number of ways to put
one colored ball into each of n distinguished urns U1, U2, ..., Un with the color repertoire
{C1, C2, ..., Ci+k−2} for urn Ui, i ∈ {2, 3, ..., n}, and {C0} for urn U1.

As mentioned above, in the context of the Jabotinsky structure, |s(k; n,m)| counts un-
ordered m−forests of size n with the m increasingly vertex labelled and also vertex colored
trees following the rules of Proposition 25.

Example 27. |s(3; 5, 2)| = 660 from forest counting
The unordered 2−forest with n = 5 vertices comes from the m = 2 part partitions (1, 4)
and (2, 3) of 5. The first one gives rise to (1 · |s(3; 4, 1)|) · 5 = (1 · (1 · 3 · 4 · 5)) · 5 = 300 such
forests where the last factor 5 comes from the number of increasing labelings. The second
partition leads to (|s(3; 2, 1| · |s(3; 3, 1|) · (5

2

)
= ((1 · 3) (1 · 3 · 4)) 10 = 360 forests. The last

factor comes again from the increasing labelings. Thus |s(3; 5, 2)| = 660. See Sloane’s OEIS
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[18, A046089(2, 5) = 660] and the illustration in Figure 6a). In Figure 6b) the forests
counted by |s(4; 5, 3)| = A049352(5, 3) = 440 are shown.

Note 28. The definition of these rooted increasingly labelled trees with outdegree 0 and 1
only and the mentioned vertex coloring is somewhat artificial, as the equivalent urn problem
counting shows. One can, in fact, also give such an interpretation to the S(k; n,m) and
|S(−k; n,m)| numbers for k ∈ N. The prefactor in the corresponding recurrences, (15)
and (16), are positive integers which will give the number of colors for the vertices of depth
d = n − 1.

Finally the non-negative numbers s(−k; n, 1), k ∈ N, with e.g.f. Yk(z) = g1(−k; z) given

in (8) are considered. From
d Yk(z)

dz
= (1 + x)k, rewritten as (1 + (1 + k) Yk(z))

k
k+1 , one

finds the would be outdegree function

Φk(y) = (1 + (1 + k) y)
k

k+1 , k ∈ N . (19)

The case k = 0 with s(0; n, 1) = δn,1 and g1(0; z) = 1 is also covered. It is clear from
the binomial expansion that for k ∈ N neither the o.g.f. φk nor the e.g.f. ϕk will generate
non-negative integers sk;r. This is the content of the next proposition.

Proposition 29. s(−k; n, 1), k ∈ N
s(−k; n, 1) does for k ∈ N not count rooted increasing trees of some variety studied Bergeron
et al. [3], i.e., there exists no outdegree function Φk which generates non-negative integers
sk;r for all r ≥ 0.

The recurrence relation for s(−k; n, 1) =: d
(k)
n , k ≥ 0, is

d(k)
n = (k − (n− 2)) d

(k)
n−1 , d

(k)
1 = 1 , n ≥ 2. (20)

For given k ∈ N one has d
(k)
n = 0 for all n ≥ k + 2.Therefore one only has to interpret

the positive numbers d
(k)
1 , ..., d

(k)
k+1, with d

(k)
j = kj−1 (falling factorials). If one considers, like

above, trees with only vertex outdegrees 0 or 1 and depth dependent vertex coloring one is
lead to the following proposition.

Proposition 30. s(−k; n, 1), k ∈ N0

s(−k; n, 1) counts for k ∈ N0 rooted increasing trees of sizes n ∈ {1, 2, ..., k+1} with outdegree
r ∈ {0, 1} and vertex coloring from the repertoire {C1, C2, ..., Ck+1−d} if the depth is d ∈
{0, 1, ..., n− 1}. The vertex with d = 0, the root labelled 1, carries a fixed color, say C0.

Example 31. s(−5; n, 1) colored trees with outdgree 0 or 1
Only unary trees (no branching) of sizes n = 1, 2, ..., 6 are present. For n = 1 one has the root
vertex labelled 1 with color C0. All other 5 trees have k = 5 colors C1, ..., C5 for the vertex of
depth 1 (labelled 2). Then the number of available colors decreases by one with each depth
increase by one. In the sixth tree, having size 6, the leave (d = 5) has the color C1. The
counting is therefore 1, 1·5 = 5, 1·5·4 = 20, 1·5·4·3 = 60, 1·5·4·3·2 = 120, 1·5! = 120,
in agreement with the sequence s(−5; n, 1) = A008279(5, n− 1) = [1, 5, 20, 60, 120, 120, 0̄],
where 0̄ stands for the periodic sequence with 0 entries only.
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The numbers s(−k; n,m), k ∈ N0, count then unordered m−forests composed of trees
described in Proposition 30.

4 Generalized partition number arrays

It is well know, see e.g., Charalambides [9, p. 292, eq.(8.25)], that the ordinary Stirling
numbers S(n, m) appear as sum over the multinomial numbers M3 with fixed number of
parts m of the underlying partitions of n. See Sloane’s OEIS [18, A036040], also Abramowitz
and Stegun [1, p. 831–2 ] for the array M3.

S(n,m) =
∑

~a∈P(n,m)

M3(n,~a) , (21)

with P(n,m) the set of partitions of n with m parts written in the exponent version
(1a1 , 2a2 , ..., nan), aj ∈ N0, j = 1, ..., n, ~a := (a1, a2, ..., an), m =

∑n
j=1 aj, n =

∑n
j=1 j aj

and

M3(n,~a) =
n!∏n

j=1 aj! j!aj
. (22)

It is therefore tempting to define generalized M32(k), k ∈ N, partition number arrays
such that

S(k; n,m) =
∑

~a∈P(n,m)

M32(k; n,~a) , k ∈ N . (23)

We write M32(k) to indicate the M3 generalization related to the S(k; n,m) numbers of
the second kind. The term ‘partition numbers’ is used because every partition defines such
a number, not because they count the number of some specific partitions. Remember that
S(1; n,m) = S(n,m) and S(0; n,m) = δn,m. This generalization is an easy task knowing
the combinatorial interpretation of S(k; n,m) in terms of rooted increasing k−ary trees from
Proposition 10. The partition (1a1 , 2a2 , ..., nan) corresponds to the m−forest built from a1

trees of size 1, a2 trees of size 2, etc. These trees of size j ∈ In are counted by S(k; j, 1).

Definition 32. ~a−forest
For n ∈ N let ~a := (a1, a2, ..., an) with aj ∈ N0, m :=

∑n
j=1 aj and n =

∑n
j=1 j aj. An

~a−forest of size n is an m−forest of size n with specified component trees T a1
1 , T a2

2 , ..., T an
n

where the exponents aj from N0 indicate that a tree Tj of size j is present aj times if aj ≥ 1,
and such a tree is absent if aj = 0.

Definition 33. M32(k), k ∈ N, partition number arrays
M32(k; n,~a), k ∈ N, is the number of unordered ~a−forests of size n with component trees
Tj, j ∈ In, described in Proposition 3 and counted by S(k; j, 1).

With this definition and from Proposition 9 it is clear that (23) holds.
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Example 34. M32(2) partition number array
This array can be viewed online in Sloane’s OEIS [18, A130561]. It begins like
1; 2|1; 6|6|1; 24|24, 12|12|1; 120|120, 120|60|60|20|1; ... where semi-colons separate different
n values and | separates different part numbers m. For example, n = 5, m = 4 has only
one partition (13, 21, 30, 40, 50) ≡ (13, 2), and the counting is 10 · 2 = 20 for this unordered
(3, 1, 0, 0, 0)-forest because there are

(
5
3

)
= 10 increasing vertex labelings and the size 2 tree

comes for k = 2 in two versions. Thus M32(2; 5, (3, 1, 0, 0, 0)) = 20. This appears in array
A130561 in row 5, column 6 because the partitions are ordered by increasing parts number
m and within equal parts numbers the ordering is like Abramowitz-Stegun [1, pp. 831–2].
Therefore we call this the A-St ordering of partitions.

Proposition 35. M32(k), k ∈ N, formula

M32(k; n,~a) = M3(n,~a)
n∏

j=1

(S(k; j, 1))aj , k ∈ N. (24)

Proof. M3(n;~a) of (22) counts the number of ways to partition a set of n objects, taken as
In, into blocks of type (1a1 , 2a2 , ..., nan), i.e., a block of size j appears aj times and is absent
if aj = 0. The order of the block elements is irrelevant, so w.l.o.g. they are taken increasing.
The blocks are therefore disjoint and exhaustive subsets of In. Also the aj blocks of size j
are not ordered. E.g., n = 5,~a = (1, 2, 0, 0, 0) and there are three (not six) set partitions
for each j ∈ I5 taken as element of the size 1 set. Altogether there are 15 such set partitions.
Therefore M3(n,~a) is exactly the number of unordered ~a−forests of size n with increasing
trees, depending on the partition ~a ∈ P(n,m). What is left is to multiply each increasing
~a−forest with the number of possible k−ary trees. This number is S(k; j, 1) for every tree
of size j and it therefore comes aj times. This explains the second part on the r.h.s. of the
proposition. In the given example the extra factor is 1 · 32 for k = 3 from the j = 1 tree (a
root) and the two size j = 2 ternary trees.

Note 36. The first rows of number arrays M32(k) are shown under Sloane’s OEIS [18,
A036040, A130561, A134144, A134149, A134273, A134278] for k = 1, 2, ..., 6, respectively,
where they are called M3(k).

Definition 37. M̂32(k) ≡ ′M32(k)/M3′ partition number array

M̂32(k; n,~a) :=
n∏

j=1

(S(k; j, 1))aj , k ∈ N. (25)

Some of these arrays are shown under Sloane’s OEIS [18, A134286, A134133, A134145,
A134150, A134274, A134279 ] for k = 1, 2, ..., 6, respectively, where they are called symbol-
ically M3(k)/M3. Division of arrays of the same shape here means division of corresponding
entries.

Definition 38. Ŝ(k) triangle of numbers

Ŝ(k; n,m) :=
∑

~a∈P(n,m)

M̂32(k; n,~a) , k ∈ N. (26)
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Ŝ(k; n,m) = 0 if n < m (lower triangular matrix). One may add colum m = 0 and row

n = 0 putting Ŝ(k; n, 0) = δn,0. Some of these triangles are shown under Sloane’s OEIS [18,
A023531 (unit matrix), A134134, A134146, A134151, A134275, A134280], for k = 1, 2, ..., 6,
respectively, where they are called S2(k)′.
It is clear that one can also define partition number arrays M32(−k), k ∈ N, related to the
unordered ~a−forests composed of rooted increasing trees Tj, j ∈ N, defined in Proposition 15
and counted by |S(−k; j, 1)|. The definition is analogous to Definition 33. This will lead to

|S(−k; n,m)| =
∑

~a∈P(n,m)

M32(−k; n,~a) , k ∈ N , (27)

and the formula for M32(−k; n,~a) = M3(n,~a) M̂32(−k; n,~a) with

M̂32(−k; n,~a) =
n∏

j=1

(|S(−k; j, 1)|)aj , k ∈ N. (28)

Some of these M32(−k) arrays are shown in Sloane’s OEIS [18, A143171, A143172,

A143173, A144267, A144268 ], for k = 1, 2, ..., 5. Some of the M̂32(−k) arrays are shown
there under A144269, A144274, A144279, A144284, A144341, for k = 1, 2, ..., 5.
The corresponding triangle of numbers Ŝ(−k), defined analogous to Definition 38, are shown
there under A144270, A144275, A144280, A144285, A144342, for k = 1, 2, ..., 5.

It is also well known, see e.g., Charalambides [9, p. 292, eq.(8.24) ], that the unsigned
(also called absolute) Stirling numbers of the first kind |s(n,m)| satisfy

|s(n, m)| =
∑

~a∈P(n,m)

M3(n,~a)
n∏

j=1

((j − 1)!)aj . (29)

The ~a−forest discussion in the proof of Proposition 35 explains this because |s(n,m)| =
(j − 1)! counts the trees of these forests. See the k = 1 remark following Proposition 25.
The straightforward generalization is then given by the following definition.

Definition 39. M31(k) partition number array
M31(k; n,~a), k ∈ N, is the number of unordered ~a−forests of size n with component trees
Tj, j ∈ In, described in Proposition 25 and counted by |s(k; j, 1)|.

Similarly one has

Proposition 40. M31(k), k ∈ N, formula

M31(k; n,~a) = M3(n,~a)
n∏

j=1

(|s(k; j, 1)|)aj , k ∈ N, (30)

with |s(k; n, 1)| = (n + k − 2)!/(k − 1)!, k ∈ N 2.

2There is a typo in Lang [15], (45) upper alternative: it should read
(
k−2+n

k−2

)
(k − 1)n−2 for k =

2, 3, ... and n ∈ N .
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Some of these arrays are shown in Sloane’s OEIS [18, A036039, A130561, A144353,
A144354, A144355, A144356] for k = 1, .., 6, respectively.

Proposition 41. M31(−k), k ∈ N, formula

M31(−k; n,~a) = M3(n,~a)
n∏

j=1

(s(−k; j, 1))aj , k ∈ N, (31)

with s(−k; n, 1) = kn−1, k ∈ N.

The first of these triangles are shown in Sloane’s OEIS [18, A144357, A144358, A144877,
A144878, A144879] for k = 1, 2, ..., 5.
The corresponding partition arrays which are obtained by factoring out the M3 array are

then M̂31(k) and M̂31(−k), for k ∈ N. From these partition arrays one obtains triangles
by summing over like part numbers in each row. These triangles are called ŝ(k) for k ∈ Z,
ŝ(0) is the infinite unit matrix 1∞. We list the A−numbers in Sloane’s OEIS [18] for the
first of these arrays and triangles:

M̂31(k), k = 1, 2, ..., 6: A107106, A134133, A144880, A144885, A144890, A145356.

ŝ(k), k = 1, 2, ..., 6: A144351, A134134, A144881, A144886, A144891, A145357.

M̂31(−k), k = 1, 2, ..., 5: A145361, A145363, A145366, A145369, A145372.
ŝ(−k), k = 1, 2, ..., 5: A145362, A145364, A145367, A145370, A145373.

Note 42. Generalizations of S(k), k ∈ N
Blasiak et al. [5], [6] have generalized S(k; n,m) to S(k, l; n,m) with l ∈ N by considering
also powers dl

x in eq. 1 with special emphasis on the row sums, the Bell numbers Bk,l(n)
3. Blasiak et al. [7] noticed via Sloane’s OEIS that the Bell numbers Br,1(n) enumerate
r−ary forests. Méndez et al. [16] gave a combinatorial approach to further generalized
Stirling numbers of the second kind (see Schork [17]), called Sr,s(k) with r and s standing
for n−tuples of positive integers and k taking certain values 4. This approach, specialized
to the S(r; n,m) numbers for r ∈ N, differs from the interpretation given in this paper 5.

5 Acknowledgments

The author likes to thank Simon Plätzer for pointing out the program Graphviz.

3The labels in these references are r, s instead of k, l.
4Sr,s(k) ≡ Sr,s(n, k) appears in the normal ordering of the ordered product

∏← n

i=1 xri (dx)si and k =
s1, ...,

∑n
i=1 si.

5E.g., the Lah number S(2; 3, 2) is according to the approach of [16] 4 + 2 = 6, using n = 3, ri =
2, si = 1, i = 1, 2, 3, but in the interpretation as unordered 2−forest of binary increasing trees with 4
leaves it is 3 · 2 = 6.
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1 2 3

n=1 n=2

1 2n=3

3 4 5 6 7 8

9 10 11 12

1 2 3n=4

4 5 6 7 8 9

10 11 12 13 14 15

16 17 18 19 20 21

22 23 24 25 26 27

28 29 30 31 32 33

34 35 36 37 38 39

40 41 42 43 44 45

46 47 48 49 50 51

52 53 54 55

Figure 1: Ternary (3-ary) ordered trees with n = 1,2,3 and 4 vertices.

There are 1, 3, 12, 55 such trees for n = 1, 2, 3, 4, respectively. See [18], A001764.
The trees of all figures have been produced with the help of Graphviz.
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n = 1: r = 0 1*1*1 = 1

n = 2: r = 1, 3-ary 1*3*1 = 3

n = 3: r = 2; 4-ary 1*6*2 = 12

r = 1; 3-ary 1*3^2*1 = 9

total sum: 21

n = 4: r = 3; 5-ary 1*10*3! = 60

r = 2,1; 4-,3-ary 2*(6*3)*3 = 108

r = 1,2; 3-,4-ary 1*(3*6)*2 = 36

r = 1; 3-ary 1*(3^3)*1 = 27

total sum: 231

Figure 2: Rooted ordered trees with n = 1,2,3,4 vertices.

There are 1, 1, 2, 5, (Calalan numbers) such trees without vertex labels. The trees are ar-
ranged according to the 1, 1, 2, 4 types of unordered rooted trees for n = 1, 2, 3, 4, respectively.
The number of increasing labelings is the same for every tree in given row. It .
The outdegree values r appearing in a tree with the corresponding k + r − 1-ary vertices,
here with k = 3, are given. The box gives the multiplicity. The first factor is the number
of diagrams in the row. The second factor comes from the various vertex types (due to the
arity) and the last factor gives the number of increasing labelings.
The multiplicities for n = 1, 2, 3, 4 add up to 1, 3, 21, 231, respectively, corresponding to the
|S(−3, n, 1)| = A008545(n− 1) numbers.
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n = 5: r = 4; 6-ary 1*15*4! = 360

r = 3,1; 5-,3-ary 3*(10*3)*(2*6) = 1080

r = 2,1; 4-,3-ary 1*(6*3^2)*6 = 324

r = 2,1; 4-,3-ary 2*(6*3^2)*4 = 432

r = 1,3; 3-,5-ary 1*(3*10)*3! = 180

r = 1,2; 3-,4-ary 2*(3^2*6)*3 = 324

r = 1,2; 3-,4-ary 1*(3^2*6)*2 = 108

r = 2; 4-ary 2*(6^2)*8 = 576

r = 1; 3-ary 1*(3^4)*1 = 81

total sum: 3465

Figure 3: Rooted ordered trees with n = 5 vertices.

There are C4 = 14 such trees without vertex labels. The trees are arranged according to
the 9 types of unordered rooted trees.
The number of increasing labelings is the same for every tree in a given row.
The outdegree values r appearing in the tree with the corresponding k + r − 1-ary vertices,
here with k = 3, are given. The box gives the multiplicity. The first factor is the number
of diagrams in the row. The second factor comes from the various vertex types (due to the
arity) and the last factor gives the number of increasing labelings.
The multiplicities add up to 3465 = |S(−3, 5, 1)| = A008545(4).
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3 times 40 = 120

10*6 = 60

3 times 30 = 90

10*3^2 = 90

2 times 30 = 60

10*6 = 60

24

15*3 = 45

3 times 20 = 60

10*3^2 = 90

2 times 20 = 40

6^2*3 = 108

4 times 15 = 60

6^2*3 = 108

3 times 12 = 36

10*3^2 = 90

2 times 10 = 20

6^2*3 = 108

2 times 10 = 20

6*3^3 = 162

2 times 8 = 16

6^2*3 = 108

6

6*3^3 = 162

6

10*3^2 = 90

2 times 5 = 10

6*3^3 = 162

2 times 4 = 8

6*3^3 = 162

2 times 3 = 6

6*3^3 = 162

2

6*3^3 = 162

1

3^5 = 243

Figure 4: Rooted ordered trees with n = 6 vertices.

There are C5 = 42 such trees without vertex labels. The trees are arranged according to
the 20 types of unordered rooted trees.
The number of increasing labelings is the same for each tree in any row. It is given in the
upper box on the right of each row. These numbers add up to 945 = 9!!.
The number in the lower box in each row is the multiplicity for each tree when outdegree
r ≥ 1 vertices are taken (r + 2)-ary. This applies for the case k = 3. The total sum
(upperbox · lower box numbers) is 65835 = |S(−3; 6, 1)|. The 20 unordered rooted trees
come in altogether 426 increasing labelings. 23



types of non-ordered trees:

2^2*3 = 12 2^2*1 = 4 2^3*1 = 8
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Figure 5: Rooted unordered trees of size n = 4 with vertex types s0 = 1,
s1 = 2 = s2.

In the first row the three types of size n = 4 trees which are present are shown together
with their multiplicities when coloring (first factor) and increasing labeling (second factor)
are considered. These trees are shown in the subsequent rows.
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a)     |S1(3;5,2)| :

(1,4): C0 C0

C1,C2,C3

C1,C2,C3,C4

C1,C2,C3,C4,C5

(1*(1*3*4*5))*5 = 300

(2,3): C0

C1,C2,C3

C0

C1,C2,C3

C1,C2,C3,C4

((1*3)(1*3*4))*10 = 360

total: 300 + 360 = 660

b)     |S1(4;5,3)| :

(1,1,3): C0 C0 C0

C1,C2,C3,C4

C1,C2,C3,C4,C5

(1*1*(1*4*5))*10 = 200

(1,2,2): C0 C0 C0

C1,C2,C3,C4 C1,C2,C3,C4 (1*(1*4)^2)*(5*3) = 240

total: 200 + 240 = 440

Figure 6: Nonordered forest counting for |s(k; n, m)|
In Figure 6a) the 2−forests counted by |s(3; 5, 2)| = 300 + 360 = 660 are illustrated. The
vertex colors are here called C0, C1, ..., C5. The number of possible increasing labelings is
given by the last factors 5 and 10.
In Figure 6b) the 3−forests counted by |s(4; 5, 3)| = 200 + 240 = 440 are illustrated.
The possible colors are indicated, giving rise to the first factor and the increasing labelings
account for the second one.
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