next up previous
Next: Convolutions of generalized Fibonacci Up: p35 Previous: Introduction and Summary

Riccati equations for Fibonacci and Lucas generating functions

Lemma 1: $ U(a,b;x)$ defined in eq. 2 satisfies eq. 13.

Proof: This follows from the identity

$\displaystyle {{\partial {}}\over{\partial {x}}} {\frac{1}{1-a\,x-b\,x^2}}\ =\ (a+2\,b\,x)\,{\frac{1}{(1-a\,x-b\,x^2)^2}}\\ $ (58)

after multiplication with $ (a\, +\, 2\,b\,x)$ and separation of the last term in eq. 13.$ \square $.

Corollary 1: For the non-degenerate case $ a^2+4\,b \neq 0$ this is a Riccati eq. (also a special Bernoulli eq.) which can be written as shown in eq. 15.
In the degenerate case $ U(a;x)\, :=\, U(a,-a^2/4;x)$ satisfies the first order linear differential eq. 27 as well as the second order non-linear differential eq. given as the first of eqs. 29.

Proof: Elementary. $ \square $

Note 1: The degenerate case is equivalent to $ \lambda_{+}(a,b)\, =\,
\lambda_{-}(a,b)$ with the definition of the characteristic roots of the recursion relation eq. 1 given in eq. 4. We may assume that not both, $ a$ and $ b$, vanish and $ x\neq 1/\lambda_{\pm}(a,b)
\, =\, -\lambda_{\mp}/b$. In each case $ U(a,b;0)\, =\, 1$.

Lemma 2: $ V(a,b;x)$ defined in eq. 3 for $ a\neq 0$ satisfies eq. 14.

Proof: This follows from the identity

$\displaystyle {{\partial {}}\over{\partial {x}}}\, V(a,b;x) \ =\ \Bigl{(}(2\,{\...
...\,x \ +\ 2\, {\frac{b^2}{a}}\, x^2\,\Bigr{)}\, {\frac{1}{(1-a\,x-b\,x^2)^2}}\ ,$ (59)

after multiplication with $ (a+2\,b\,x)^2$ and separation of the $ V^2(a,b;x)$ term shown in eq. 14.$ \square $

Corollary 2: For the non-degenerate case $ a^2+4\,b \neq 0$ eq. 14 is a Riccati eq. which can be written as shown in eq. 16.
In the degenerate case $ V(a;x)\, :=\, V(a,-a^2/4;x) $ satisfies the first order linear differential eq. 28 as well as the first order non-linear differential eq. given as the second of eqs. 29.
In each case $ V(a,b,0)\, =\, 1$.

Proof: Elementary. $ \square $

Proposition 1 (Solution of eq. 13):

a) For $ a^2+4\,b \neq 0$ the solution of the Riccati eq. 13 with $ U(a,b;0)\, =\, 1$ is given by eq. 2.

b) For $ a^2+4\,b \, =\, 0$ the solution of eqs. 27 is $ U(a,-a^2/4;x)$ from eq. 2.

Proof: a) Rewrite this Riccati eq., which is also of the Bernoulli type, $ y^{\prime}\, +\, f(x)\,y\, +\, g(x)\, y^2\, =\, 0$ with $ f(x)\, =\, 4\,b/(a\,+2\,b\,x)$ and $ g(x)
\, =\, -(a^2\, +\, 4\, b)/(a\,+2\,b\,x)$, provided $ x\neq -a/(2\,b)$, as a first order inhomogeneous linear differential eq. for $ z=1/y$: $ z^{\prime}\, -\, f(x)\, z\, -\, g(x)\, =\, 0$. Its standard solution is $ y^{-1}\, =\, z\, =\,
exp(F(x))\, \left[ C\, +\, \int\, dx\,exp(F(x))\, g(x)\right] $ with $ F(x)\, :=\, \int\,dx\,f(x)\, =\, ln((a\, +\, 2\,b\,x)^2)$. The integral becomes $ (1\, +\, a^2/(4\,b))/(a\, +\, 2\,b\,x)^2$ and $ C$ is fixed from the initial value $ y^{-1}(0)\, =\, z(0)\, =\, 1$ to $ -1/(4\,b)$. The solution $ 1/(1\, -\, a\,x\, -\, b\,x^2)$ is also correct if $ x=-a/(2\,b)$.
b) For $ a^2+4\,b \, =\, 0$ and $ x\neq 2/a$ the solution of the standard linear differential eq. 27 coincides with eq. 2. For $ x \, =\, 2/a$ eq. 27 demands a singular $ (ln\, U)^{\prime}$; a requirement which is satisfied by this solution. $ \square $

Proposition 2 (Solution of eq. 14):

a) For $ a^2+4\,b \neq 0$ the solution of the Riccati eq. 14 with $ V(a,b;x)$ is given by eq. 3.

b) For $ a^2+4\,b \, =\, 0$ the solution of eqs. 28 is $ V(a,
-a^2/4;0)\, =\, 1$ from eq. 3.

Proof: a) Similar to the proof of Proposition 1 as standard solution to the inhomogeneous linear differential eq. for $ y^{-1}\, =\, z$ where now $ f(x)\, =\, 2\,{\frac{b}{a}}/(1\, +\, 2\, {\frac{b}{a}}\, x)$, $ g(x)\, =\, -(a\, +\, 4\,{\frac{b}{a}})/(1\, +\, 2\,{\frac{b}{a}}\, x)^2$ and $ 1\, +\, 2\,{\frac{b}{a}}\,x\, \neq \,0$. The initial value is $ y^{-1}(0)\, =\, z(0)\, =\, 1$ which fixes the solution to be $ y\, =\, (1\, +\, 2\,{\frac{b}{a}}\, x)/(1\, -\, a\,x\, -\, b\,x^2)$. This is also correct for $ 1\, +\, 2\,{\frac{b}{a}}\, x\, =\, 0$.
b) For $ a^2\, +\, 4\,b\, =\, 0$ and $ x\neq 2/a$ the solution of eq. 28 with $ V(a;0)\, =\, 1$ coincides with $ V(a,-a^2/4;x)\ =\ 1/(1\, -\, a\,x/2)$. For $ x \, =\, 2/a$ eq. 28 needs a singular $ (ln\,V)^{\prime}$ because $ a\neq 0$, and this requirement is indeed fulfilled. $ \square $



next up previous
Next: Convolutions of generalized Fibonacci Up: p35 Previous: Introduction and Summary
Wolfdieter Lang 2002-04-04